» Articles » PMID: 33261057

Artificial Intelligence Tools for Refining Lung Cancer Screening

Overview
Journal J Clin Med
Specialty General Medicine
Date 2020 Dec 2
PMID 33261057
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.

Citing Articles

A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer.

Kotoulas S, Spyratos D, Porpodis K, Domvri K, Boutou A, Kaimakamis E Cancers (Basel). 2025; 17(5).

PMID: 40075729 PMC: 11898928. DOI: 10.3390/cancers17050882.


An early lung cancer diagnosis model for non-smokers incorporating ct imaging analysis and circulating genetically abnormal cells (CACs).

Ni R, Huang Y, Wang L, Chen H, Zhang G, Yu Y BMC Cancer. 2025; 25(1):124.

PMID: 39844169 PMC: 11756104. DOI: 10.1186/s12885-024-13268-5.


Revolutionizing Radiology With Artificial Intelligence.

Bhandari A Cureus. 2024; 16(10):e72646.

PMID: 39474591 PMC: 11521355. DOI: 10.7759/cureus.72646.


Artificial intelligence-driven computer aided diagnosis system provides similar diagnosis value compared with doctors' evaluation in lung cancer screening.

Gao S, Xu Z, Kang W, Lv X, Chu N, Xu S BMC Med Imaging. 2024; 24(1):141.

PMID: 38862884 PMC: 11165751. DOI: 10.1186/s12880-024-01288-3.


Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan.

Kiraly A, Cunningham C, Najafi R, Nabulsi Z, Yang J, Lau C Radiol Artif Intell. 2024; 6(3):e230079.

PMID: 38477661 PMC: 11140517. DOI: 10.1148/ryai.230079.


References
1.
Cai D, Xu Y, Ding R, Qiu K, Zhang R, Wang H . Extensive serum biomarker analysis in patients with non-small-cell lung carcinoma. Cytokine. 2019; 126:154868. DOI: 10.1016/j.cyto.2019.154868. View

2.
Bi W, Hosny A, Schabath M, Giger M, Birkbak N, Mehrtash A . Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019; 69(2):127-157. PMC: 6403009. DOI: 10.3322/caac.21552. View

3.
Petousis P, Han S, Aberle D, Bui A . Prediction of lung cancer incidence on the low-dose computed tomography arm of the National Lung Screening Trial: A dynamic Bayesian network. Artif Intell Med. 2016; 72:42-55. PMC: 5082434. DOI: 10.1016/j.artmed.2016.07.001. View

4.
Onoi K, Chihara Y, Uchino J, Shimamoto T, Morimoto Y, Iwasaku M . Immune Checkpoint Inhibitors for Lung Cancer Treatment: A Review. J Clin Med. 2020; 9(5). PMC: 7290914. DOI: 10.3390/jcm9051362. View

5.
Smolle E, Pichler M . Non-Smoking-Associated Lung Cancer: A distinct Entity in Terms of Tumor Biology, Patient Characteristics and Impact of Hereditary Cancer Predisposition. Cancers (Basel). 2019; 11(2). PMC: 6406530. DOI: 10.3390/cancers11020204. View