» Articles » PMID: 33241838

Spontaneous, Solvent-free Entrapment of SiRNA Within Lipid Nanoparticles

Overview
Journal Nanoscale
Specialty Biotechnology
Date 2020 Nov 26
PMID 33241838
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Lipid nanoparticle (LNP) formulations of nucleic acid are leading vaccine candidates for COVID-19, and enabled the first approved RNAi therapeutic, Onpattro. LNPs are composed of ionizable cationic lipids, phosphatidylcholine, cholesterol, and polyethylene glycol (PEG)-lipids, and are produced using rapid-mixing techniques. These procedures involve dissolution of the lipid components in an organic phase and the nucleic acid in an acidic aqueous buffer (pH 4). These solutions are then combined using a continuous mixing device such as a T-mixer or microfluidic device. In this mixing step, particle formation and nucleic acid entrapment occur. Previous work from our group has shown that, in the absence of nucleic acid, the particles formed at pH 4 are vesicular in structure, a portion of these particles are converted to electron-dense structures in the presence of nucleic acid, and the proportion of electron-dense structures increases with nucleic acid content. What remained unclear from previous work was the mechanism by which vesicles form electron-dense structures. In this study, we use cryogenic transmission electron microscopy and dynamic light scattering to show that efficient siRNA entrapment occurs in the absence of ethanol (contrary to the established paradigm), and suggest that nucleic acid entrapment occurs through inversion of preformed vesicles. We also leverage this phenomenon to show that specialized mixers are not required for siRNA entrapment, and that preformed particles at pH 4 can be used for in vitro transfection.

Citing Articles

Toward understanding lipid reorganization in RNA lipid nanoparticles in acidic environments.

Garaizar A, Diaz-Oviedo D, Zablowsky N, Rissanen S, Kobberling J, Sun J Proc Natl Acad Sci U S A. 2024; 121(45):e2404555121.

PMID: 39475644 PMC: 11551392. DOI: 10.1073/pnas.2404555121.


Preformed Vesicle Approach to LNP Manufacturing Enhances Retinal mRNA Delivery.

Eygeris Y, Henderson M, Curtis A, Jozic A, Stoddard J, Reynaga R Small. 2024; 20(37):e2400815.

PMID: 38738752 PMC: 11661498. DOI: 10.1002/smll.202400815.


Diffusiophoresis of Macromolecules within the Framework of Multicomponent Diffusion.

Annunziata O Molecules. 2024; 29(6).

PMID: 38543003 PMC: 10974165. DOI: 10.3390/molecules29061367.


Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection.

Pattipeiluhu R, Zeng Y, Hendrix M, Voets I, Kros A, Sharp T Nat Commun. 2024; 15(1):1303.

PMID: 38347001 PMC: 10861598. DOI: 10.1038/s41467-024-45666-5.


Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe Gene Editing in Human Skin.

Bolsoni J, Liu D, Mohabatpour F, Ebner R, Sadhnani G, Tafech B ACS Nano. 2023; 17(21):22046-22059.

PMID: 37918441 PMC: 10655174. DOI: 10.1021/acsnano.3c08644.