» Articles » PMID: 33233657

Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2020 Nov 25
PMID 33233657
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

NRF2 is a transcription factor that coordinates the antioxidant response in many different tissues, ensuring cytoprotection from endogenous and exogenous stress stimuli. In the kidney, its function is essential in appropriate cellular response to oxidative stress, however its aberrant activation supports progression, metastasis, and resistance to therapies in renal cell carcinoma, similarly to what happens in other nonrenal cancers. While at the moment direct inhibitors of NRF2 are not available, understanding the molecular mechanisms that regulate its hyperactivation in specific tumor types is crucial as it may open new therapeutic perspectives. Here, we focus our attention on renal cell carcinoma, describing how NRF2 hyperactivation can contribute to tumor progression and chemoresistance. Furthermore, we highlight the mechanism whereby the many pathways that are generally altered in these tumors converge to dysregulation of the KEAP1-NRF2 axis.

Citing Articles

Oxidative stress and NRF2 signaling in kidney injury.

Ng C, Kim M, Yanti , Kwak M Toxicol Res. 2025; 41(2):131-147.

PMID: 40013079 PMC: 11850685. DOI: 10.1007/s43188-024-00272-x.


Oncogenic TFE3 fusions drive OXPHOS and confer metabolic vulnerabilities in translocation renal cell carcinoma.

Li J, Huang K, Thakur M, McBride F, Sadagopan A, Gallant D Nat Metab. 2025; .

PMID: 39915638 DOI: 10.1038/s42255-025-01218-9.


Nrf2 Signaling in Renal Cell Carcinoma: A Potential Candidate for the Development of Novel Therapeutic Strategies.

Schiavoni V, Emanuelli M, Milanese G, Galosi A, Pompei V, Salvolini E Int J Mol Sci. 2025; 25(24.

PMID: 39769005 PMC: 11675435. DOI: 10.3390/ijms252413239.


Toward a CRISPR-based mouse model of -deficient clear cell kidney cancer: Initial experience and lessons learned.

Stransky L, Gao W, Schmidt L, Bi K, Ricketts C, Ramesh V Proc Natl Acad Sci U S A. 2024; 121(41):e2408549121.

PMID: 39365820 PMC: 11474080. DOI: 10.1073/pnas.2408549121.


HADH suppresses clear cell renal cell carcinoma progression through reduced NRF2-dependent glutathione synthesis.

Chu C, Liu S, He Z, Wu M, Xia J, Zeng H Transl Oncol. 2024; 49:102112.

PMID: 39226735 PMC: 11402447. DOI: 10.1016/j.tranon.2024.102112.


References
1.
Ying G, Wu R, Xia M, Fei X, He Q, Zha C . Identification of eight key miRNAs associated with renal cell carcinoma: A meta-analysis. Oncol Lett. 2018; 16(5):5847-5855. PMC: 6176358. DOI: 10.3892/ol.2018.9384. View

2.
Jain A, Jaiswal A . GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem. 2007; 282(22):16502-10. DOI: 10.1074/jbc.M611336200. View

3.
Gattenlohner S, Etschmann B, Riedmiller H, Muller-Hermelink H . Lack of KRAS and BRAF mutation in renal cell carcinoma. Eur Urol. 2009; 55(6):1490-1. DOI: 10.1016/j.eururo.2009.02.024. View

4.
Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003; 3(1):11-22. DOI: 10.1038/nrc969. View

5.
Patra K, Hay N . The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014; 39(8):347-54. PMC: 4329227. DOI: 10.1016/j.tibs.2014.06.005. View