» Articles » PMID: 33214718

Pseudomonas Aeruginosa Adaptation and Evolution in Patients with Cystic Fibrosis

Overview
Date 2020 Nov 20
PMID 33214718
Citations 182
Authors
Affiliations
Soon will be listed here.
Abstract

Intense genome sequencing of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) airways has shown inefficient eradication of the infecting bacteria, as well as previously undocumented patient-to-patient transmission of adapted clones. However, genome sequencing has limited potential as a predictor of chronic infection and of the adaptive state during infection, and thus there is increasing interest in linking phenotypic traits to the genome sequences. Phenotypic information ranges from genome-wide transcriptomic analysis of patient samples to determination of more specific traits associated with metabolic changes, stress responses, antibiotic resistance and tolerance, biofilm formation and slow growth. Environmental conditions in the CF lung shape both genetic and phenotypic changes of P. aeruginosa during infection. In this Review, we discuss the adaptive and evolutionary trajectories that lead to early diversification and late convergence, which enable P. aeruginosa to succeed in this niche, and we point out how knowledge of these biological features may be used to guide diagnosis and therapy.

Citing Articles

High prevalence of carbapenem-resistant and identification of a novel VIM-type metallo-β-lactamase, VIM-92, in clinical isolates from northern China.

Zhao L, Pu J, Liu Y, Cai H, Han M, Yu Y Front Microbiol. 2025; 16:1543509.

PMID: 40078538 PMC: 11897005. DOI: 10.3389/fmicb.2025.1543509.


Low leucine levels in the blood enhance the pathogenicity of neonatal meningitis-causing Escherichia coli.

Sun H, Li X, Yang X, Qin J, Liu Y, Zheng Y Nat Commun. 2025; 16(1):2466.

PMID: 40075077 PMC: 11904087. DOI: 10.1038/s41467-025-57850-2.


Molecular Markers Specific for the Genera Provide Novel and Reliable Means for the Identification of Other Strains/spp. Related to These Genera.

Rudra B, Gupta R Genes (Basel). 2025; 16(2).

PMID: 40004512 PMC: 11855360. DOI: 10.3390/genes16020183.


Regulation of the H1 Type VI Secretion System by the Transcriptional Regulator NfxB in .

Liu S, Wu Z, Yan W, Liu Q, Zhao Y, Gao T Int J Mol Sci. 2025; 26(4).

PMID: 40003937 PMC: 11855083. DOI: 10.3390/ijms26041472.


A VgrG2b fragment cleaved by caspase-11/4 promotes infection through suppressing the NLRP3 inflammasome.

Qian Y, Liu Q, Cheng X, Wang C, Kong C, Li M Elife. 2025; 13.

PMID: 39998486 PMC: 11856931. DOI: 10.7554/eLife.99939.


References
1.
Ratjen F, Doring G . Cystic fibrosis. Lancet. 2003; 361(9358):681-9. DOI: 10.1016/S0140-6736(03)12567-6. View

2.
Marvig R, Sommer L, Molin S, Krogh Johansen H . Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet. 2014; 47(1):57-64. DOI: 10.1038/ng.3148. View

3.
Marvig R, Krogh Johansen H, Molin S, Jelsbak L . Genome analysis of a transmissible lineage of pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet. 2013; 9(9):e1003741. PMC: 3764201. DOI: 10.1371/journal.pgen.1003741. View

4.
Williams D, Evans B, Haldenby S, Walshaw M, Brockhurst M, Winstanley C . Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med. 2015; 191(7):775-85. PMC: 4407486. DOI: 10.1164/rccm.201409-1646OC. View

5.
Cramer N, Klockgether J, Wrasman K, Schmidt M, Davenport C, Tummler B . Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ Microbiol. 2011; 13(7):1690-704. DOI: 10.1111/j.1462-2920.2011.02483.x. View