» Articles » PMID: 31363089

Genetically Diverse Pseudomonas Aeruginosa Populations Display Similar Transcriptomic Profiles in a Cystic Fibrosis Explanted Lung

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Aug 1
PMID 31363089
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Previous studies have demonstrated substantial genetic diversification of Pseudomonas aeruginosa across sub-compartments in cystic fibrosis (CF) lungs. Here, we isolate P. aeruginosa from five different sampling areas in the upper and lower airways of an explanted CF lung, analyze ex vivo transcriptional profiles by RNA-seq, and use colony re-sequencing and deep population sequencing to determine the genetic diversity within and across the various sub-compartments. We find that, despite genetic variation, the ex vivo transcriptional profiles of P. aeruginosa populations inhabiting different regions of the CF lung are similar. Although we cannot estimate the extent to which the transcriptional response recorded here actually reflects the in vivo transcriptomes, our results indicate that there may be a common in vivo transcriptional profile in the CF lung environment.

Citing Articles

Establishment and characterization of persistent infections in air-liquid interface cultures of human airway epithelial cells.

Bouheraoua S, Cleeves S, Preusse M, Musken M, Braubach P, Fuchs M Infect Immun. 2025; 93(3):e0060324.

PMID: 39964154 PMC: 11895474. DOI: 10.1128/iai.00603-24.


Polymicrobial infection in cystic fibrosis and future perspectives for improving Mycobacterium abscessus drug discovery.

Baker E, Allcott G, Cox J NPJ Antimicrob Resist. 2025; 2(1):38.

PMID: 39843836 PMC: 11721438. DOI: 10.1038/s44259-024-00060-5.


Dual RNA sequencing of a co-culture model of Pseudomonas aeruginosa and human 2D upper airway organoids.

Pleguezuelos-Manzano C, Beenker W, van Son G, Begthel H, Amatngalim G, Beekman J Sci Rep. 2025; 15(1):2222.

PMID: 39824906 PMC: 11742674. DOI: 10.1038/s41598-024-82500-w.


Refined methodology for quantifying virulence using .

Axline C, Kochan T, Nozick S, Ward T, Afzal T, Niki I Microbiol Spectr. 2024; 13(2):e0166624.

PMID: 39665556 PMC: 11792518. DOI: 10.1128/spectrum.01666-24.


Effect of cell-free culture on bacterial pathogens isolated from cystic fibrosis patients: and studies.

Aban C, Orosco S, Arganaraz Aybar J, Albarracin L, Venecia A, Perret L Front Microbiol. 2024; 15:1440090.

PMID: 39351305 PMC: 11439784. DOI: 10.3389/fmicb.2024.1440090.


References
1.
Gellatly S, Hancock R . Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013; 67(3):159-73. DOI: 10.1111/2049-632X.12033. View

2.
Smith E, Buckley D, Wu Z, Saenphimmachak C, Hoffman L, DArgenio D . Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006; 103(22):8487-92. PMC: 1482519. DOI: 10.1073/pnas.0602138103. View

3.
Valentini M, Gonzalez D, Mavridou D, Filloux A . Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol. 2017; 41:15-20. DOI: 10.1016/j.mib.2017.11.006. View

4.
Vogne C, Aires J, Bailly C, Hocquet D, Plesiat P . Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2004; 48(5):1676-80. PMC: 400545. DOI: 10.1128/AAC.48.5.1676-1680.2004. View

5.
Marvig R, Damkiaer S, Khademi S, Markussen T, Molin S, Jelsbak L . Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio. 2014; 5(3):e00966-14. PMC: 4010824. DOI: 10.1128/mBio.00966-14. View