» Articles » PMID: 33214569

Full Wave 3D Inverse Scattering Transmission Ultrasound Tomography in the Presence of High Contrast

Overview
Journal Sci Rep
Specialty Science
Date 2020 Nov 20
PMID 33214569
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

We present here a quantitative ultrasound tomographic method yielding a sub-mm resolution, quantitative 3D representation of tissue characteristics in the presence of high contrast media. This result is a generalization of previous work where high impedance contrast was not present and may provide a clinically and laboratory relevant, relatively inexpensive, high resolution imaging method for imaging in the presence of bone. This allows tumor, muscle, tendon, ligament or cartilage disease monitoring for therapy and general laboratory or clinical settings. The method has proven useful in breast imaging and is generalized here to high-resolution quantitative imaging in the presence of bone. The laboratory data are acquired in ~ 12 min and the reconstruction in ~ 24 min-approximately 200 times faster than previously reported simulations in the literature. Such fast reconstructions with real data require careful calibration, adequate data redundancy from a 2D array of 2048 elements and a paraxial approximation. The imaging results show that tissue surrounding the high impedance region is artifact free and has correct speed of sound at sub-mm resolution.

Citing Articles

Angular spatial compounding of diffraction corrected images improves ultrasound attenuation measurements.

Liu M, Wiskin J, Czarnota G, Oelze M J Acoust Soc Am. 2025; 157(3):1638-1649.

PMID: 40053445 PMC: 11890159. DOI: 10.1121/10.0036124.


Breast Glandular and Ductal Volume Changes during the Menstrual Cycle: A Study in 48 Breasts Using Ultralow-Frequency Transmitted Ultrasound Tomography/Volography.

Wiskin J, Klock J, Love S Tomography. 2024; 10(5):789-805.

PMID: 38787020 PMC: 11125938. DOI: 10.3390/tomography10050060.


Spectral-based Quantitative Ultrasound Imaging Processing Techniques: Comparisons of RF Versus IQ Approaches.

Liu M, Kou Z, Zhao Y, Wiskin J, Czarnota G, Oelze M Ultrason Imaging. 2024; 46(2):75-89.

PMID: 38318705 PMC: 10962227. DOI: 10.1177/01617346231226224.


In vivo noninvasive systemic myography of acute systemic vasoactivity in female pregnant mice.

Huda K, Lawrence D, Thompson W, Lindsey S, Bayer C Nat Commun. 2023; 14(1):6286.

PMID: 37813833 PMC: 10562381. DOI: 10.1038/s41467-023-42041-8.


A Forward Model Incorporating Elevation-Focused Transducer Properties for 3-D Full-Waveform Inversion in Ultrasound Computed Tomography.

Li F, Villa U, Duric N, Anastasio M IEEE Trans Ultrason Ferroelectr Freq Control. 2023; 70(10):1339-1354.

PMID: 37682648 PMC: 10775680. DOI: 10.1109/TUFFC.2023.3313549.


References
1.
Wiskin J, Malik B, Natesan R, Lenox M . Quantitative assessment of breast density using transmission ultrasound tomography. Med Phys. 2019; 46(6):2610-2620. PMC: 6618090. DOI: 10.1002/mp.13503. View

2.
Johnson S, Zhou Y, Tracy M, Berggren M, Stenger F . Inverse scattering solutions by a sinc basis, multiple source, moment method--Part III: Fast algorithms. Ultrason Imaging. 1984; 6(1):103-16. DOI: 10.1177/016173468400600109. View

3.
Wiskin J, Borup D, Iuanow E, Klock J, Lenox M . 3-D Nonlinear Acoustic Inverse Scattering: Algorithm and Quantitative Results. IEEE Trans Ultrason Ferroelectr Freq Control. 2017; 64(8):1161-1174. PMC: 6214813. DOI: 10.1109/TUFFC.2017.2706189. View

4.
Turco S, Frinking P, Wildeboer R, Arditi M, Wijkstra H, Lindner J . Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling to Machine Learning. Ultrasound Med Biol. 2020; 46(3):518-543. DOI: 10.1016/j.ultrasmedbio.2019.11.008. View

5.
Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti A . Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018; 2(1):36. PMC: 6234198. DOI: 10.1186/s41747-018-0068-z. View