» Articles » PMID: 33208378

Revealing Nanoscale Mineralization Pathways of Hydroxyapatite Using in Situ Liquid Cell Transmission Electron Microscopy

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Nov 19
PMID 33208378
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

To treat impairments in hard tissues or overcome pathological calcification in soft tissues, a detailed understanding of mineralization pathways of calcium phosphate materials is needed. Here, we report a detailed mechanistic study of hydroxyapatite (HA) mineralization pathways in an artificial saliva solution via in situ liquid cell transmission electron microscopy (TEM). It is found that the mineralization of HA starts by forming ion-rich and ion-poor solutions in the saliva solution, followed by coexistence of the classical and nonclassical nucleation processes. For the nonclassical path, amorphous calcium phosphate (ACP) functions as the substrate for HA nucleation on the ACP surface, while the classical path features direct HA nucleation from the solution. The growth of HA crystals on the surface of ACP is accompanied by the ACP dissolution process. The discoveries reported in this work are important to understand the physiological and pathological formation of HA minerals, as well as to engineer the biomineralization process for bone healing and hard tissue repairs.

Citing Articles

Electro-spun piezoelectric PLLA smart composites as a scaffold on bone fracture: A review.

Mirghaffari M, Mahmoodiyan A, Mahboubizadeh S, Shahbazi A, Soleimani Y, Mirghaffari S Regen Ther. 2025; 28:591-605.

PMID: 40061293 PMC: 11889349. DOI: 10.1016/j.reth.2025.01.026.


Bone Regeneration: Mini-Review and Appealing Perspectives.

Le Grill S, Brouillet F, Drouet C Bioengineering (Basel). 2025; 12(1).

PMID: 39851312 PMC: 11763268. DOI: 10.3390/bioengineering12010038.


The glycerol stabilized calcium phosphate cluster for rapid remineralization of tooth enamel by a water-triggered transformation.

Luo N, Lu B, Deng Y, Zeng H, Zhang Y, Zhan J Nat Commun. 2025; 16(1):58.

PMID: 39746946 PMC: 11695679. DOI: 10.1038/s41467-024-54785-y.


Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review.

DiCecco L, Tang T, Sone E, Grandfield K Small. 2024; 21(2):e2407539.

PMID: 39523734 PMC: 11735904. DOI: 10.1002/smll.202407539.


Highly Stable Amorphous (Pyro)phosphate Aggregates: Pyrophosphate as a Carrier for Bioactive Ions and Drugs in Bone Repair Applications.

Yang M, Cai X, Wang C, Wang Z, Xue F, Chu C ACS Omega. 2024; 9(22):23724-23740.

PMID: 38854518 PMC: 11154929. DOI: 10.1021/acsomega.4c01660.


References
1.
Zhao W, Xu Z, Yang Y, Sahai N . Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study. Langmuir. 2014; 30(44):13283-92. DOI: 10.1021/la503158p. View

2.
Combes C, Rey C . Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010; 6(9):3362-78. DOI: 10.1016/j.actbio.2010.02.017. View

3.
Demer L, Tintut Y . Mineral exploration: search for the mechanism of vascular calcification and beyond: the 2003 Jeffrey M. Hoeg Award lecture. Arterioscler Thromb Vasc Biol. 2003; 23(10):1739-43. DOI: 10.1161/01.ATV.0000093547.63630.0F. View

4.
Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E . Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16):1781-802. PMC: 2486339. DOI: 10.1002/jcc.20289. View

5.
Holtz M, Yu Y, Gao J, Abruna H, Muller D . In situ electron energy-loss spectroscopy in liquids. Microsc Microanal. 2013; 19(4):1027-35. DOI: 10.1017/S1431927613001505. View