» Articles » PMID: 24325680

Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2013 Dec 12
PMID 24325680
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Direct observations of solution-phase nanoparticle growth using in situ liquid transmission electron microscopy (TEM) have demonstrated the importance of "non-classical" growth mechanisms, such as aggregation and coalescence, on the growth and final morphology of nanocrystals at the atomic and single nanoparticle scales. To date, groups have quantitatively interpreted the mean growth rate of nanoparticles in terms of the Lifshitz-Slyozov-Wagner (LSW) model for Ostwald ripening, but less attention has been paid to modeling the corresponding particle size distribution. Here we use in situ fluid stage scanning TEM to demonstrate that silver nanoparticles grow by a length-scale dependent mechanism, where individual nanoparticles grow by monomer attachment but ensemble-scale growth is dominated by aggregation. Although our observed mean nanoparticle growth rate is consistent with the LSW model, we show that the corresponding particle size distribution is broader and more symmetric than predicted by LSW. Following direct observations of aggregation, we interpret the ensemble-scale growth using Smoluchowski kinetics and demonstrate that the Smoluchowski model quantitatively captures the mean growth rate and particle size distribution.

Citing Articles

Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review.

DiCecco L, Tang T, Sone E, Grandfield K Small. 2024; 21(2):e2407539.

PMID: 39523734 PMC: 11735904. DOI: 10.1002/smll.202407539.


Resolving Nonequilibrium Shape Variations among Millions of Gold Nanoparticles.

Shen Z, Xavier P, Bean R, Bielecki J, Bergemann M, Daurer B ACS Nano. 2024; 18(24):15576-15589.

PMID: 38810115 PMC: 11191741. DOI: 10.1021/acsnano.4c00378.


Mechanistic Insights into the Synthesis of Nickel-Graphene Nanostructures for Gas Sensors.

Hsuan Joseph Sung C, Gong B, Yu H, Ede S, Cruz L, Fang H Small Methods. 2024; 9(2):e2400245.

PMID: 38763987 PMC: 11843432. DOI: 10.1002/smtd.202400245.


Controlled formation of gold nanoparticles with tunable plasmonic properties in tellurite glass.

Wei Y, Zhao J, Fuhrmann S, Sajzew R, Wondraczek L, Ebendorff-Heidepriem H Light Sci Appl. 2023; 12(1):293.

PMID: 38057309 PMC: 10700336. DOI: 10.1038/s41377-023-01324-x.


Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis.

Wang R, Li R, Zheng P, Yang Z, Qian C, Wang Z J Microbiol. 2023; 61(5):543-558.

PMID: 37052796 DOI: 10.1007/s12275-023-00042-8.


References
1.
Abecassis B, Testard F, Spalla O, Barboux P . Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett. 2007; 7(6):1723-7. DOI: 10.1021/nl0707149. View

2.
Yuk J, Park J, Ercius P, Kim K, Hellebusch D, Crommie M . High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 2012; 336(6077):61-4. DOI: 10.1126/science.1217654. View

3.
Hsu S, On K, Tao A . Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. J Am Chem Soc. 2011; 133(47):19072-5. DOI: 10.1021/ja2089876. View

4.
Liao H, Zheng H . Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J Am Chem Soc. 2013; 135(13):5038-43. DOI: 10.1021/ja310612p. View

5.
Evans J, Jungjohann K, Browning N, Arslan I . Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 2011; 11(7):2809-13. PMC: 3162246. DOI: 10.1021/nl201166k. View