» Articles » PMID: 33176162

Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression During Differentiation and Tumorigenesis

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2020 Nov 11
PMID 33176162
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

The RNA isoform repertoire is regulated by splicing factor (SF) expression, and alterations in SF levels are associated with disease. SFs contain ultraconserved poison exon (PE) sequences that exhibit greater identity across species than nearby coding exons, but their physiological role and molecular regulation is incompletely understood. We show that PEs in serine-arginine-rich (SR) proteins, a family of 14 essential SFs, are differentially spliced during induced pluripotent stem cell (iPSC) differentiation and in tumors versus normal tissues. We uncover an extensive cross-regulatory network of SR proteins controlling their expression via alternative splicing coupled to nonsense-mediated decay. We define sequences that regulate PE inclusion and protein expression of the oncogenic SF TRA2β using an RNA-targeting CRISPR screen. We demonstrate location dependency of RS domain activity on regulation of TRA2β-PE using CRISPR artificial SFs. Finally, we develop splice-switching antisense oligonucleotides to reverse the increased skipping of TRA2β-PE detected in breast tumors, altering breast cancer cell viability, proliferation, and migration.

Citing Articles

LUC7 proteins define two major classes of 5' splice sites in animals and plants.

Kenny C, McGurk M, Schuler S, Cordero A, Laubinger S, Burge C Nat Commun. 2025; 16(1):1574.

PMID: 39979239 PMC: 11842720. DOI: 10.1038/s41467-025-56577-4.


Antisense oligonucleotide-mediated TRA2β poison exon inclusion induces the expression of a lncRNA with anti-tumor effects.

Leclair N, Brugiolo M, Park S, Devoucoux M, Urbanski L, Angarola B Nat Commun. 2025; 16(1):1670.

PMID: 39955311 PMC: 11829967. DOI: 10.1038/s41467-025-56913-8.


An ultra-conserved poison exon in the Tra2b gene encoding a splicing activator is essential for male fertility and meiotic cell division.

Dalgliesh C, Aldalaqan S, Atallah C, Best A, Scott E, Ehrmann I EMBO J. 2025; 44(3):877-902.

PMID: 39748121 PMC: 11791180. DOI: 10.1038/s44318-024-00344-6.


Human introns contain conserved tissue-specific cryptic poison exons.

Margasyuk S, Kuznetsova A, Zavileyskiy L, Vlasenok M, Skvortsov D, Pervouchine D NAR Genom Bioinform. 2024; 6(4):lqae163.

PMID: 39664813 PMC: 11632617. DOI: 10.1093/nargab/lqae163.


Global transcriptome modulation by xenobiotics: the role of alternative splicing in adaptive responses to chemical exposures.

Annalora A, Coburn J, Jozic A, Iversen P, Marcus C Hum Genomics. 2024; 18(1):127.

PMID: 39558396 PMC: 11572221. DOI: 10.1186/s40246-024-00694-6.


References
1.
Markmiller S, Soltanieh S, Server K, Mak R, Jin W, Fang M . Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules. Cell. 2018; 172(3):590-604.e13. PMC: 5969999. DOI: 10.1016/j.cell.2017.12.032. View

2.
van Der Houven Van Oordt W, Newton K, Screaton G, Caceres J . Role of SR protein modular domains in alternative splicing specificity in vivo. Nucleic Acids Res. 2000; 28(24):4822-31. PMC: 115228. DOI: 10.1093/nar/28.24.4822. View

3.
Desmet F, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C . Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009; 37(9):e67. PMC: 2685110. DOI: 10.1093/nar/gkp215. View

4.
Phillips J, Pan Y, Tsai B, Xie Z, Demirdjian L, Xiao W . Pathway-guided analysis identifies Myc-dependent alternative pre-mRNA splicing in aggressive prostate cancers. Proc Natl Acad Sci U S A. 2020; 117(10):5269-5279. PMC: 7071906. DOI: 10.1073/pnas.1915975117. View

5.
Paradis C, Cloutier P, Shkreta L, Toutant J, Klarskov K, Chabot B . hnRNP I/PTB can antagonize the splicing repressor activity of SRp30c. RNA. 2007; 13(8):1287-300. PMC: 1924885. DOI: 10.1261/rna.403607. View