» Articles » PMID: 33173168

NeoR, a Near-infrared Absorbing Rhodopsin

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Nov 11
PMID 33173168
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

The Rhizoclosmatium globosum genome encodes three rhodopsin-guanylyl cyclases (RGCs), which are predicted to facilitate visual orientation of the fungal zoospores. Here, we show that RGC1 and RGC2 function as light-activated cyclases only upon heterodimerization with RGC3 (NeoR). RGC1/2 utilize conventional green or blue-light-sensitive rhodopsins (λ = 550 and 480 nm, respectively), with short-lived signaling states, responsible for light-activation of the enzyme. The bistable NeoR is photoswitchable between a near-infrared-sensitive (NIR, λ = 690 nm) highly fluorescent state (Q = 0.2) and a UV-sensitive non-fluorescent state, thereby modulating the activity by NIR pre-illumination. No other rhodopsin has been reported so far to be functional as a heterooligomer, or as having such a long wavelength absorption or high fluorescence yield. Site-specific mutagenesis and hybrid quantum mechanics/molecular mechanics simulations support the idea that the unusual photochemical properties result from the rigidity of the retinal chromophore and a unique counterion triad composed of two glutamic and one aspartic acids. These findings substantially expand our understanding of the natural potential and limitations of spectral tuning in rhodopsin photoreceptors.

Citing Articles

De novo design of transmembrane fluorescence-activating proteins.

Zhu J, Liang M, Sun K, Wei Y, Guo R, Zhang L Nature. 2025; .

PMID: 39972138 DOI: 10.1038/s41586-025-08598-8.


Rational Design of Far-Red Archaerhodopsin-3-Based Fluorescent Genetically Encoded Voltage Indicators: from Elucidation of the Fluorescence Mechanism in Archers to Novel Red-Shifted Variants.

Nikolaev D, Mironov V, Metelkina E, Shtyrov A, Mereshchenko A, Demidov N ACS Phys Chem Au. 2024; 4(4):347-362.

PMID: 39069984 PMC: 11274289. DOI: 10.1021/acsphyschemau.3c00073.


Photoisomerization pathway of the microbial rhodopsin chromophore in solution.

Sugiura M, Kandori H Photochem Photobiol Sci. 2024; 23(8):1435-1443.

PMID: 38886314 DOI: 10.1007/s43630-024-00602-w.


Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields.

Li H, Xu X, Guan R, Movsesyan A, Lu Z, Xu Q Nat Commun. 2024; 15(1):4846.

PMID: 38844481 PMC: 11156920. DOI: 10.1038/s41467-024-49086-3.


RhoMax: Computational Prediction of Rhodopsin Absorption Maxima Using Geometric Deep Learning.

Sela M, Church J, Schapiro I, Schneidman-Duhovny D J Chem Inf Model. 2024; 64(12):4630-4639.

PMID: 38829021 PMC: 11200256. DOI: 10.1021/acs.jcim.4c00467.


References
1.
Konold P, van Stokkum I, Muzzopappa F, Wilson A, Groot M, Kirilovsky D . Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J Am Chem Soc. 2018; 141(1):520-530. PMC: 6331140. DOI: 10.1021/jacs.8b11373. View

2.
Sali A, Blundell T . Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993; 234(3):779-815. DOI: 10.1006/jmbi.1993.1626. View

3.
Kovalev K, Polovinkin V, Gushchin I, Alekseev A, Shevchenko V, Borshchevskiy V . Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci Adv. 2019; 5(4):eaav2671. PMC: 6457933. DOI: 10.1126/sciadv.aav2671. View

4.
Lee J, Cheng X, Swails J, Yeom M, Eastman P, Lemkul J . CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2015; 12(1):405-13. PMC: 4712441. DOI: 10.1021/acs.jctc.5b00935. View

5.
Guo Y, Beyle F, Bold B, Watanabe H, Koslowski A, Thiel W . Active site structure and absorption spectrum of channelrhodopsin-2 wild-type and C128T mutant. Chem Sci. 2018; 7(6):3879-3891. PMC: 6013792. DOI: 10.1039/c6sc00468g. View