» Articles » PMID: 33171052

Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2020 Nov 10
PMID 33171052
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Solution-processed quantum dot (QD) lasers are one of the holy grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs >1 exciton per QD, which is difficult to achieve because of fast nonradiative Auger recombination. The threshold can, however, be reduced by electronic doping of the QDs, which decreases the absorption near the band-edge, such that the stimulated emission (SE) can easily outcompete absorption. Here, we show that by electrochemically doping films of CdSe/CdS/ZnS QDs, we achieve quantitative control over the gain threshold. We obtain stable and reversible doping of more than two electrons per QD. We quantify the gain threshold and the charge carrier dynamics using ultrafast spectroelectrochemistry and achieve quantitative agreement between experiments and theory, including a vanishingly low gain threshold for doubly doped QDs. Over a range of wavelengths with appreciable gain coefficients, the gain thresholds reach record-low values of ∼1 × 10 excitons per QD. These results demonstrate a high level of control over the gain threshold in doped QD solids, opening a new route for the creation of cheap, solution-processable, low-threshold QD lasers.

Citing Articles

Colloidal quantum dots enable tunable liquid-state lasers.

Hahm D, Pinchetti V, Livache C, Ahn N, Noh J, Li X Nat Mater. 2024; 24(1):48-55.

PMID: 39578631 PMC: 11685099. DOI: 10.1038/s41563-024-02048-y.


Quantifying Efficiency Roll-Off Factors in Quantum-Dot Light-Emitting Diodes.

Yan X, Zhu X, Wu B, Jin Y, Tian W, Jin S Adv Sci (Weinh). 2024; 11(46):e2410041.

PMID: 39440522 PMC: 11633546. DOI: 10.1002/advs.202410041.


Temporal Dynamics of Collective Resonances in Periodic Metasurfaces.

Kolkowski R, Berkhout A, Roscam Abbing S, Pal D, Dieleman C, Geuchies J ACS Photonics. 2024; 11(6):2480-2496.

PMID: 38911846 PMC: 11191746. DOI: 10.1021/acsphotonics.4c00412.


Near-Unity Photoluminescence Quantum Yield of Core-Only InP Quantum Dots a Simple Postsynthetic InF Treatment.

Stam M, Almeida G, Ubbink R, van der Poll L, Vogel Y, Chen H ACS Nano. 2024; 18(22):14685-14695.

PMID: 38773944 PMC: 11155241. DOI: 10.1021/acsnano.4c03290.


Guilty as Charged: The Role of Undercoordinated Indium in Electron-Charged Indium Phosphide Quantum Dots.

Stam M, du Fosse I, Infante I, Houtepen A ACS Nano. 2023; 17(18):18576-18583.

PMID: 37712414 PMC: 10540256. DOI: 10.1021/acsnano.3c07029.


References
1.
Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale C . Optical gain and stimulated emission in nanocrystal quantum dots. Science. 2000; 290(5490):314-7. DOI: 10.1126/science.290.5490.314. View

2.
Klimov V, Ivanov S, Nanda J, Achermann M, Bezel I, McGuire J . Single-exciton optical gain in semiconductor nanocrystals. Nature. 2007; 447(7143):441-6. DOI: 10.1038/nature05839. View

3.
Grimaldi G, Geuchies J, van der Stam W, du Fosse I, Brynjarsson B, Kirkwood N . Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots. Nano Lett. 2019; 19(5):3002-3010. PMC: 6509645. DOI: 10.1021/acs.nanolett.9b00164. View

4.
Roh K, Dang C, Lee J, Chen S, Steckel J, Coe-Sullivan S . Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers. Opt Express. 2014; 22(15):18800-6. DOI: 10.1364/OE.22.018800. View

5.
Hanifi D, Bronstein N, Koscher B, Nett Z, Swabeck J, Takano K . Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science. 2019; 363(6432):1199-1202. DOI: 10.1126/science.aat3803. View