Deep Learning in Deep Time
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Dunker S, Motivans E, Rakosy D, Boho D, Mader P, Hornick T
. Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol. 2020; 229(1):593-606.
DOI: 10.1111/nph.16882.
View
2.
LeCun Y, Bengio Y, Hinton G
. Deep learning. Nature. 2015; 521(7553):436-44.
DOI: 10.1038/nature14539.
View
3.
Villon S, Mouillot D, Chaumont M, Subsol G, Claverie T, Villeger S
. A new method to control error rates in automated species identification with deep learning algorithms. Sci Rep. 2020; 10(1):10972.
PMC: 7334229.
DOI: 10.1038/s41598-020-67573-7.
View
4.
Trisos C, Merow C, Pigot A
. The projected timing of abrupt ecological disruption from climate change. Nature. 2020; 580(7804):496-501.
DOI: 10.1038/s41586-020-2189-9.
View
5.
Nelson G, Ellis S
. The history and impact of digitization and digital data mobilization on biodiversity research. Philos Trans R Soc Lond B Biol Sci. 2018; 374(1763).
PMC: 6282090.
DOI: 10.1098/rstb.2017.0391.
View