» Articles » PMID: 33168754

Deep Learning in Deep Time

Overview
Specialty Science
Date 2020 Nov 10
PMID 33168754
Authors
Affiliations
Soon will be listed here.
References
1.
Dunker S, Motivans E, Rakosy D, Boho D, Mader P, Hornick T . Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol. 2020; 229(1):593-606. DOI: 10.1111/nph.16882. View

2.
LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015; 521(7553):436-44. DOI: 10.1038/nature14539. View

3.
Villon S, Mouillot D, Chaumont M, Subsol G, Claverie T, Villeger S . A new method to control error rates in automated species identification with deep learning algorithms. Sci Rep. 2020; 10(1):10972. PMC: 7334229. DOI: 10.1038/s41598-020-67573-7. View

4.
Trisos C, Merow C, Pigot A . The projected timing of abrupt ecological disruption from climate change. Nature. 2020; 580(7804):496-501. DOI: 10.1038/s41586-020-2189-9. View

5.
Nelson G, Ellis S . The history and impact of digitization and digital data mobilization on biodiversity research. Philos Trans R Soc Lond B Biol Sci. 2018; 374(1763). PMC: 6282090. DOI: 10.1098/rstb.2017.0391. View