» Articles » PMID: 33152079

The AntiSMASH Database Version 3: Increased Taxonomic Coverage and New Query Features for Modular Enzymes

Overview
Specialty Biochemistry
Date 2020 Nov 5
PMID 33152079
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

Microorganisms produce natural products that are frequently used in the development of antibacterial, antiviral, and anticancer drugs, pesticides, herbicides, or fungicides. In recent years, genome mining has evolved into a prominent method to access this potential. antiSMASH is one of the most popular tools for this task. Here, we present version 3 of the antiSMASH database, providing a means to access and query precomputed antiSMASH-5.2-detected biosynthetic gene clusters from representative, publicly available, high-quality microbial genomes via an interactive graphical user interface. In version 3, the database contains 147 517 high quality BGC regions from 388 archaeal, 25 236 bacterial and 177 fungal genomes and is available at https://antismash-db.secondarymetabolites.org/.

Citing Articles

Mining microbial and metabolic dark matter in extreme environments: a roadmap for harnessing the power of multi-omics data.

Han J, Li S, Li W, Dong L Adv Biotechnol (Singap). 2025; 2(3):26.

PMID: 39883228 PMC: 11740847. DOI: 10.1007/s44307-024-00034-8.


Pangenome mining of the Streptomyces genus redefines species' biosynthetic potential.

Mohite O, Jorgensen T, Booth T, Charusanti P, Phaneuf P, Weber T Genome Biol. 2025; 26(1):9.

PMID: 39810189 PMC: 11734326. DOI: 10.1186/s13059-024-03471-9.


Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato.

Cangioli L, Tabacchioni S, Visca A, Fiore A, Aprea G, Ambrosino P Microorganisms. 2025; 12(12.

PMID: 39770765 PMC: 11677507. DOI: 10.3390/microorganisms12122562.


The workshops on computational applications in secondary metabolite discovery (CAiSMD).

Ntie-Kang F, Eni D, Telukunta K, Osamor V, Egieyeh S, Duran-Frigola M Phys Sci Rev. 2024; 9(10):3289-3304.

PMID: 39478877 PMC: 11519840. DOI: 10.1515/psr-2024-0015.


Identification and molecular detection of the pathogen of leaf yellowing through genome analysis.

Tsao W, Li Y, Tu Y, Nai Y, Lin T, Wang C Front Microbiol. 2024; 15:1431813.

PMID: 39403082 PMC: 11472846. DOI: 10.3389/fmicb.2024.1431813.


References
1.
Blin K, Medema M, Kazempour D, Fischbach M, Breitling R, Takano E . antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013; 41(Web Server issue):W204-12. PMC: 3692088. DOI: 10.1093/nar/gkt449. View

2.
Newman D, Cragg G . Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83(3):770-803. DOI: 10.1021/acs.jnatprod.9b01285. View

3.
Blin K, Kim H, Medema M, Weber T . Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform. 2017; 20(4):1103-1113. PMC: 6781578. DOI: 10.1093/bib/bbx146. View

4.
Blin K, Pascal Andreu V, De Los Santos E, Del Carratore F, Lee S, Medema M . The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 2018; 47(D1):D625-D630. PMC: 6324005. DOI: 10.1093/nar/gky1060. View

5.
Medema M, Fischbach M . Computational approaches to natural product discovery. Nat Chem Biol. 2015; 11(9):639-48. PMC: 5024737. DOI: 10.1038/nchembio.1884. View