» Articles » PMID: 26284671

Computational Approaches to Natural Product Discovery

Overview
Journal Nat Chem Biol
Date 2015 Aug 19
PMID 26284671
Citations 217
Authors
Affiliations
Soon will be listed here.
Abstract

Starting with the earliest Streptomyces genome sequences, the promise of natural product genome mining has been captivating: genomics and bioinformatics would transform compound discovery from an ad hoc pursuit to a high-throughput endeavor. Until recently, however, genome mining has advanced natural product discovery only modestly. Here, we argue that the development of algorithms to mine the continuously increasing amounts of (meta)genomic data will enable the promise of genome mining to be realized. We review computational strategies that have been developed to identify biosynthetic gene clusters in genome sequences and predict the chemical structures of their products. We then discuss networking strategies that can systematize large volumes of genetic and chemical data and connect genomic information to metabolomic and phenotypic data. Finally, we provide a vision of what natural product discovery might look like in the future, specifically considering longstanding questions in microbial ecology regarding the roles of metabolites in interspecies interactions.

Citing Articles

Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in .

Seo H, Bok J, Keller N mBio. 2025; 16(3):e0387424.

PMID: 39964163 PMC: 11898546. DOI: 10.1128/mbio.03874-24.


Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives.

Gangwal A, Lavecchia A J Med Chem. 2025; 68(4):3948-3969.

PMID: 39916476 PMC: 11874025. DOI: 10.1021/acs.jmedchem.4c01257.


The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance.

Bilal H, Khan M, Khan S, Shafiq M, Fang W, Khan R Comput Struct Biotechnol J. 2025; 27:423-439.

PMID: 39906157 PMC: 11791014. DOI: 10.1016/j.csbj.2025.01.006.


Metagenomic study of lake microbial mats reveals protease-inhibiting antiviral peptides from a core microbiome member.

Padhi C, Field C, Forneris C, Olszewski D, Fraley A, Sandu I Proc Natl Acad Sci U S A. 2024; 121(49):e2409026121.

PMID: 39585984 PMC: 11626197. DOI: 10.1073/pnas.2409026121.


Reclassification of two Nocardiopsis species using whole genome analysis.

Dif G, Djemouai N, Bouras N, Zitouni A Antonie Van Leeuwenhoek. 2024; 118(1):28.

PMID: 39562378 DOI: 10.1007/s10482-024-02038-9.


References
1.
Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson D . Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 2005; 33(18):5799-808. PMC: 1253831. DOI: 10.1093/nar/gki885. View

2.
Medema M, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach M . antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011; 39(Web Server issue):W339-46. PMC: 3125804. DOI: 10.1093/nar/gkr466. View

3.
Bouslimani A, Sanchez L, Garg N, Dorrestein P . Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep. 2014; 31(6):718-29. PMC: 4161218. DOI: 10.1039/c4np00044g. View

4.
Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova N . A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature. 2009; 462(7276):1056-60. PMC: 3073058. DOI: 10.1038/nature08656. View

5.
Tae H, Sohng J, Park K . MapsiDB: an integrated web database for type I polyketide synthases. Bioprocess Biosyst Eng. 2009; 32(6):723-7. DOI: 10.1007/s00449-008-0296-3. View