» Articles » PMID: 33139915

Intravenous Nanoparticle Vaccination Generates Stem-like TCF1 Neoantigen-specific CD8 T Cells

Abstract

Personalized cancer vaccines are a promising approach for inducing T cell immunity to tumor neoantigens. Using a self-assembling nanoparticle vaccine that links neoantigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we show how the route and dose alter the magnitude and quality of neoantigen-specific CD8 T cells. Intravenous vaccination (SNP-IV) induced a higher proportion of TCF1PD-1CD8 T cells as compared to subcutaneous immunization (SNP-SC). Single-cell RNA sequencing showed that SNP-IV induced stem-like genes (Tcf7, Slamf6, Xcl1) whereas SNP-SC enriched for effector genes (Gzmb, Klrg1, Cx3cr1). Stem-like cells generated by SNP-IV proliferated and differentiated into effector cells upon checkpoint blockade, leading to superior antitumor response as compared to SNP-SC in a therapeutic model. The duration of antigen presentation by dendritic cells controlled the magnitude and quality of CD8 T cells. These data demonstrate how to optimize antitumor immunity by modulating vaccine parameters for specific generation of effector or stem-like CD8 T cells.

Citing Articles

Transient inhibition of type I interferon enhances CD8+ T cell stemness and vaccine protection.

Broomfield B, Tan C, Qin R, Abberger H, Duckworth B, Alvarado C J Exp Med. 2025; 222(5).

PMID: 40062995 PMC: 11893171. DOI: 10.1084/jem.20241148.


Reinforcing cancer immunotherapy with engineered porous hollow mycobacterium tuberculosis loaded with tumor neoantigens.

Chen M, Jiang J, Chen H, Wu R, Xie W, Dai S J Immunother Cancer. 2025; 13(2).

PMID: 39915006 PMC: 11804190. DOI: 10.1136/jitc-2024-010150.


Modi-2 a vaccine stimulating CD4 responses to homocitrullinated self epitopes as therapy for solid cancers.

Al-Omari A, Cook K, Symonds P, Skinner A, Wright A, Zhu Y NPJ Vaccines. 2024; 9(1):236.

PMID: 39604380 PMC: 11603156. DOI: 10.1038/s41541-024-01029-1.


IL-2/anti-IL-2 antibody complexes augment immune responses to therapeutic cancer vaccines.

Sobral M, Cabizzosu L, Kang S, Ruark K, Najibi A, Najibi A Proc Natl Acad Sci U S A. 2024; 121(48):e2322356121.

PMID: 39556726 PMC: 11621762. DOI: 10.1073/pnas.2322356121.


A dual-STING-activating nanosystem expands cancer immunotherapeutic temporal window.

Wang J, Wang X, Xiong Q, Gao S, Wang S, Zhu S Cell Rep Med. 2024; 5(11):101797.

PMID: 39454571 PMC: 11604482. DOI: 10.1016/j.xcrm.2024.101797.


References
1.
Rosenberg S, Restifo N . Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015; 348(6230):62-8. PMC: 6295668. DOI: 10.1126/science.aaa4967. View

2.
Schumacher T, Schreiber R . Neoantigens in cancer immunotherapy. Science. 2015; 348(6230):69-74. DOI: 10.1126/science.aaa4971. View

3.
Tumeh P, Harview C, Yearley J, Shintaku I, Taylor E, Robert L . PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515(7528):568-71. PMC: 4246418. DOI: 10.1038/nature13954. View

4.
Versluis J, Long G, Blank C . Learning from clinical trials of neoadjuvant checkpoint blockade. Nat Med. 2020; 26(4):475-484. DOI: 10.1038/s41591-020-0829-0. View

5.
Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J . Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015; 520(7549):692-6. PMC: 4838069. DOI: 10.1038/nature14426. View