» Articles » PMID: 33126514

Post-Translational S-Nitrosylation of Proteins in Regulating Cardiac Oxidative Stress

Overview
Date 2020 Oct 31
PMID 33126514
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Like other post-translational modifications (PTMs) of proteins, S-nitrosylation has been considered a key regulatory mechanism of multiple cellular functions in many physiological and disease conditions. Emerging evidence has demonstrated that S-nitrosylation plays a crucial role in regulating redox homeostasis in the stressed heart, leading to discoveries in the mechanisms underlying the pathogenesis of heart diseases and cardiac protection. In this review, we summarize recent studies in understanding the molecular and biological basis of S-nitrosylation, including the formation, spatiotemporal specificity, homeostatic regulation, and association with cellular redox status. We also outline the currently available methods that have been applied to detect S-nitrosylation. Additionally, we synopsize the up-to-date studies of S-nitrosylation in various cardiac diseases in humans and animal models, and we discuss its therapeutic potential in cardiac protection. These pieces of information would bring new insights into understanding the role of S-nitrosylation in cardiac pathogenesis and provide novel avenues for developing novel therapeutic strategies for heart diseases.

Citing Articles

A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications.

Mahnoor , Malik K, Kazmi A, Sultana T, Raja N, Bibi Y Heliyon. 2025; 11(3):e41654.

PMID: 39916856 PMC: 11800088. DOI: 10.1016/j.heliyon.2025.e41654.


Nitric oxide mediates positive regulation of Nostoc flagelliforme polysaccharide yield via potential S-nitrosylation of G6PDH and UGDH.

Li M, Li Y, Han C, Zhang J, Zhu R, Zhang Y BMC Biotechnol. 2024; 24(1):58.

PMID: 39174975 PMC: 11342573. DOI: 10.1186/s12896-024-00884-z.


Sodium nitroprusside modulates oxidative and nitrosative processes in Lycopersicum esculentum L. under drought stress.

Kaya C, Ugurlar F, Seth C Plant Cell Rep. 2024; 43(6):152.

PMID: 38806834 PMC: 11133051. DOI: 10.1007/s00299-024-03238-3.


Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection.

Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O Antioxidants (Basel). 2024; 13(5).

PMID: 38790609 PMC: 11118938. DOI: 10.3390/antiox13050504.


MAP4K4 exacerbates cardiac microvascular injury in diabetes by facilitating S-nitrosylation modification of Drp1.

Chen Y, Li S, Guan B, Yan X, Huang C, Du Y Cardiovasc Diabetol. 2024; 23(1):164.

PMID: 38724987 PMC: 11084109. DOI: 10.1186/s12933-024-02254-7.


References
1.
Go Y, Jones D . Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta. 2008; 1780(11):1273-90. PMC: 2601570. DOI: 10.1016/j.bbagen.2008.01.011. View

2.
Nadtochiy S, Burwell L, Ingraham C, Spencer C, Friedman A, Pinkert C . In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. J Mol Cell Cardiol. 2009; 46(6):960-8. PMC: 2683185. DOI: 10.1016/j.yjmcc.2009.01.012. View

3.
Stamler J, Simon D, Osborne J, Mullins M, Jaraki O, Michel T . S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992; 89(1):444-8. PMC: 48254. DOI: 10.1073/pnas.89.1.444. View

4.
Devarie-Baez N, Zhang D, Li S, Whorton A, Xian M . Direct methods for detection of protein S-nitrosylation. Methods. 2013; 62(2):171-6. PMC: 3755045. DOI: 10.1016/j.ymeth.2013.04.018. View

5.
Bignon E, Allega M, Lucchetta M, Tiberti M, Papaleo E . Computational Structural Biology of -nitrosylation of Cancer Targets. Front Oncol. 2018; 8:272. PMC: 6102371. DOI: 10.3389/fonc.2018.00272. View