» Articles » PMID: 33125830

TransSynW: A Single-cell RNA-sequencing Based Web Application to Guide Cell Conversion Experiments

Overview
Date 2020 Oct 30
PMID 33125830
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Generation of desired cell types by cell conversion remains a challenge. In particular, derivation of novel cell subtypes identified by single-cell technologies will open up new strategies for cell therapies. The recent increase in the generation of single-cell RNA-sequencing (scRNA-seq) data and the concomitant increase in the interest expressed by researchers in generating a wide range of functional cells prompted us to develop a computational tool for tackling this challenge. Here we introduce a web application, TransSynW, which uses scRNA-seq data for predicting cell conversion transcription factors (TFs) for user-specified cell populations. TransSynW prioritizes pioneer factors among predicted conversion TFs to facilitate chromatin opening often required for cell conversion. In addition, it predicts marker genes for assessing the performance of cell conversion experiments. Furthermore, TransSynW does not require users' knowledge of computer programming and computational resources. We applied TransSynW to different levels of cell conversion specificity, which recapitulated known conversion TFs at each level. We foresee that TransSynW will be a valuable tool for guiding experimentalists to design novel protocols for cell conversion in stem cell research and regenerative medicine.

Citing Articles

SinCMat: A single-cell-based method for predicting functional maturation transcription factors.

Barvaux S, Okawa S, Sol A Stem Cell Reports. 2024; 19(2):270-284.

PMID: 38215756 PMC: 10874865. DOI: 10.1016/j.stemcr.2023.12.006.


ZINBMM: a general mixture model for simultaneous clustering and gene selection using single-cell transcriptomic data.

Li Y, Wu M, Ma S, Wu M Genome Biol. 2023; 24(1):208.

PMID: 37697330 PMC: 10496184. DOI: 10.1186/s13059-023-03046-0.


A single cell-based computational platform to identify chemical compounds targeting desired sets of transcription factors for cellular conversion.

Zheng M, Xie B, Okawa S, Liew S, Deng H, Sol A Stem Cell Reports. 2022; 18(1):131-144.

PMID: 36400030 PMC: 9859931. DOI: 10.1016/j.stemcr.2022.10.013.


Probabilistic boolean networks predict transcription factor targets to induce transdifferentiation.

Tercan B, Aguilar B, Huang S, Dougherty E, Shmulevich I iScience. 2022; 25(9):104951.

PMID: 36093045 PMC: 9460527. DOI: 10.1016/j.isci.2022.104951.


Narrative engineering of the liver.

Lee I, Takebe T Curr Opin Genet Dev. 2022; 75:101925.

PMID: 35700688 PMC: 10118678. DOI: 10.1016/j.gde.2022.101925.


References
1.
Kanton S, Boyle M, He Z, Santel M, Weigert A, Sanchis-Calleja F . Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature. 2019; 574(7778):418-422. DOI: 10.1038/s41586-019-1654-9. View

2.
Franzen O, Gan L, Bjorkegren J . PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford). 2019; 2019. PMC: 6450036. DOI: 10.1093/database/baz046. View

3.
Ji Y, Pos Z, Rao M, Klebanoff C, Yu Z, Sukumar M . Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol. 2011; 12(12):1230-7. PMC: 3226770. DOI: 10.1038/ni.2153. View

4.
Pei H, Yao Y, Yang Y, Liao K, Wu J . Krüppel-like factor KLF9 regulates PPARγ transactivation at the middle stage of adipogenesis. Cell Death Differ. 2010; 18(2):315-27. PMC: 3131894. DOI: 10.1038/cdd.2010.100. View

5.
Kimmel J, Penland L, Rubinstein N, Hendrickson D, Kelley D, Rosenthal A . Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res. 2019; 29(12):2088-2103. PMC: 6886498. DOI: 10.1101/gr.253880.119. View