» Articles » PMID: 33106685

Determination of Isoform-specific RNA Structure with Nanopore Long Reads

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2020 Oct 27
PMID 33106685
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Current methods for determining RNA structure with short-read sequencing cannot capture most differences between distinct transcript isoforms. Here we present RNA structure analysis using nanopore sequencing (PORE-cupine), which combines structure probing using chemical modifications with direct long-read RNA sequencing and machine learning to detect secondary structures in cellular RNAs. PORE-cupine also captures global structural features, such as RNA-binding-protein binding sites and reactivity differences at single-nucleotide variants. We show that shared sequences in different transcript isoforms of the same gene can fold into different structures, highlighting the importance of long-read sequencing for obtaining phase information. We also demonstrate that structural differences between transcript isoforms of the same gene lead to differences in translation efficiency. By revealing isoform-specific RNA structure, PORE-cupine will deepen understanding of the role of structures in controlling gene regulation.

Citing Articles

De novo basecalling of RNA modifications at single molecule and nucleotide resolution.

Cruciani S, Delgado-Tejedor A, Pryszcz L, Medina R, Llovera L, Novoa E Genome Biol. 2025; 26(1):38.

PMID: 40001217 PMC: 11853310. DOI: 10.1186/s13059-025-03498-6.


Long-read RNA sequencing: A transformative technology for exploring transcriptome complexity in human diseases.

Ament I, DeBruyne N, Wang F, Lin L Mol Ther. 2024; 33(3):883-894.

PMID: 39563027 PMC: 11897757. DOI: 10.1016/j.ymthe.2024.11.025.


m6ATM: a deep learning framework for demystifying the m6A epitranscriptome with Nanopore long-read RNA-seq data.

Yu B, Nagae G, Midorikawa Y, Tatsuno K, Dasgupta B, Aburatani H Brief Bioinform. 2024; 25(6).

PMID: 39438075 PMC: 11495873. DOI: 10.1093/bib/bbae529.


The role of structure in regulatory RNA elements.

Tants J, Schlundt A Biosci Rep. 2024; 44(10).

PMID: 39364891 PMC: 11499389. DOI: 10.1042/BSR20240139.


R2Dtool: integration and visualization of isoform-resolved RNA features.

Sethi A, Acera Mateos P, Hayashi R, Shirokikh N, Eyras E Bioinformatics. 2024; 40(8).

PMID: 39110520 PMC: 11338438. DOI: 10.1093/bioinformatics/btae495.


References
1.
Wan Y, Kertesz M, Spitale R, Segal E, Chang H . Understanding the transcriptome through RNA structure. Nat Rev Genet. 2011; 12(9):641-55. PMC: 3858389. DOI: 10.1038/nrg3049. View

2.
Kertesz M, Wan Y, Mazor E, Rinn J, Nutter R, Chang H . Genome-wide measurement of RNA secondary structure in yeast. Nature. 2010; 467(7311):103-7. PMC: 3847670. DOI: 10.1038/nature09322. View

3.
Wan Y, Qu K, Zhang Q, Flynn R, Manor O, Ouyang Z . Landscape and variation of RNA secondary structure across the human transcriptome. Nature. 2014; 505(7485):706-9. PMC: 3973747. DOI: 10.1038/nature12946. View

4.
Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R . Genome-wide measurement of RNA folding energies. Mol Cell. 2012; 48(2):169-81. PMC: 3483374. DOI: 10.1016/j.molcel.2012.08.008. View

5.
Siegfried N, Busan S, Rice G, Nelson J, Weeks K . RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods. 2014; 11(9):959-65. PMC: 4259394. DOI: 10.1038/nmeth.3029. View