» Articles » PMID: 33097546

Discovery and Mechanism of a PH-dependent Dual-binding-site Switch in the Interaction of a Pair of Protein Modules

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Oct 24
PMID 33097546
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Many important proteins undergo pH-dependent conformational changes resulting in "on-off" switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from , which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.

Citing Articles

Dissecting the pH Sensitivity of Kinesin-Driven Transport.

Baig F, Bakdaleyeh M, Bazzi H, Cao L, Tripathy S J Phys Chem B. 2024; 128(48):11855-11864.

PMID: 39575923 PMC: 11627161. DOI: 10.1021/acs.jpcb.4c03850.


Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors.

Wang Y, Zhang Y, Cui Q, Feng Y, Xuan J Molecules. 2024; 29(10).

PMID: 38792135 PMC: 11123716. DOI: 10.3390/molecules29102275.


PPI3D: a web server for searching, analyzing and modeling protein-protein, protein-peptide and protein-nucleic acid interactions.

Dapkunas J, Timinskas A, Olechnovic K, Tomkuviene M, Venclovas C Nucleic Acids Res. 2024; 52(W1):W264-W271.

PMID: 38619046 PMC: 11223826. DOI: 10.1093/nar/gkae278.


A cellulosomal double-dockerin module from Clostridium thermocellum shows distinct structural and cohesin-binding features.

Chen C, Yang H, Dong S, You C, Morais S, Bayer E Protein Sci. 2024; 33(4):e4937.

PMID: 38501488 PMC: 10949318. DOI: 10.1002/pro.4937.


Essential autoproteolysis of bacterial anti-σ factor RsgI for transmembrane signal transduction.

Chen C, Dong S, Yu Z, Qiao Y, Li J, Ding X Sci Adv. 2023; 9(27):eadg4846.

PMID: 37418529 PMC: 10328401. DOI: 10.1126/sciadv.adg4846.


References
1.
Case D, Cheatham 3rd T, Darden T, Gohlke H, Luo R, Merz Jr K . The Amber biomolecular simulation programs. J Comput Chem. 2005; 26(16):1668-88. PMC: 1989667. DOI: 10.1002/jcc.20290. View

2.
Jones D, Woods D . Acetone-butanol fermentation revisited. Microbiol Rev. 1986; 50(4):484-524. PMC: 373084. DOI: 10.1128/mr.50.4.484-524.1986. View

3.
Bayer E, Belaich J, Shoham Y, Lamed R . The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 2004; 58:521-54. DOI: 10.1146/annurev.micro.57.030502.091022. View

4.
Bras J, Alves V, Carvalho A, Najmudin S, Prates J, Ferreira L . Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. J Biol Chem. 2012; 287(53):44394-405. PMC: 3531753. DOI: 10.1074/jbc.M112.407700. View

5.
Chen C, Cui Z, Xiao Y, Cui Q, Smith S, Lamed R . Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. J Struct Biol. 2014; 188(2):188-93. DOI: 10.1016/j.jsb.2014.09.006. View