» Articles » PMID: 33094545

Machine Learning Enables Selection of Epistatic Enzyme Mutants for Stability Against Unfolding and Detrimental Aggregation

Overview
Journal Chembiochem
Specialty Biochemistry
Date 2020 Oct 23
PMID 33094545
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Machine learning (ML) has pervaded most areas of protein engineering, including stability and stereoselectivity. Using limonene epoxide hydrolase as the model enzyme and innov'SAR as the ML platform, comprising a digital signal process, we achieved high protein robustness that can resist unfolding with concomitant detrimental aggregation. Fourier transform (FT) allows us to take into account the order of the protein sequence and the nonlinear interactions between positions, and thus to grasp epistatic phenomena. The innov'SAR approach is interpolative, extrapolative and makes outside-the-box, predictions not found in other state-of-the-art ML or deep learning approaches. Equally significant is the finding that our approach to ML in the present context, flanked by advanced molecular dynamics simulations, uncovers the connection between epistatic mutational interactions and protein robustness.

Citing Articles

Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning.

Vornholt T, Mutny M, Schmidt G, Schellhaas C, Tachibana R, Panke S ACS Cent Sci. 2024; 10(7):1357-1370.

PMID: 39071060 PMC: 11273458. DOI: 10.1021/acscentsci.4c00258.


Computational peptide discovery with a genetic programming approach.

Scalzitti N, Miralavy I, Korenchan D, Farrar C, Gilad A, Banzhaf W J Comput Aided Mol Des. 2024; 38(1):17.

PMID: 38570405 PMC: 11416381. DOI: 10.1007/s10822-024-00558-0.


Machine Learning-Guided Protein Engineering.

Kouba P, Kohout P, Haddadi F, Bushuiev A, Samusevich R, Sedlar J ACS Catal. 2023; 13(21):13863-13895.

PMID: 37942269 PMC: 10629210. DOI: 10.1021/acscatal.3c02743.


How can we discover developable antibody-based biotherapeutics?.

Bauer J, Rajagopal N, Gupta P, Gupta P, Nixon A, Kumar S Front Mol Biosci. 2023; 10:1221626.

PMID: 37609373 PMC: 10441133. DOI: 10.3389/fmolb.2023.1221626.


Epoxide Hydrolases: Multipotential Biocatalysts.

Bucko M, Kaniakova K, Hronska H, Gemeiner P, Rosenberg M Int J Mol Sci. 2023; 24(8).

PMID: 37108499 PMC: 10138715. DOI: 10.3390/ijms24087334.


References
1.
Li G, Qin Y, Fontaine N, Chong M, Maria-Solano M, Feixas F . Machine Learning Enables Selection of Epistatic Enzyme Mutants for Stability Against Unfolding and Detrimental Aggregation. Chembiochem. 2020; 22(5):904-914. PMC: 7984044. DOI: 10.1002/cbic.202000612. View

2.
Ahmad S, Rao N . Thermally denatured state determines refolding in lipase: mutational analysis. Protein Sci. 2009; 18(6):1183-96. PMC: 2774429. DOI: 10.1002/pro.126. View

3.
Fontaine N, Cadet X, Vetrivel I . Novel Descriptors and Digital Signal Processing- Based Method for Protein Sequence Activity Relationship Study. Int J Mol Sci. 2019; 20(22). PMC: 6888668. DOI: 10.3390/ijms20225640. View

4.
Saito Y, Oikawa M, Nakazawa H, Niide T, Kameda T, Tsuda K . Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins. ACS Synth Biol. 2018; 7(9):2014-2022. DOI: 10.1021/acssynbio.8b00155. View

5.
Schober M, Faber K . Inverting hydrolases and their use in enantioconvergent biotransformations. Trends Biotechnol. 2013; 31(8):468-78. PMC: 3725421. DOI: 10.1016/j.tibtech.2013.05.005. View