» Articles » PMID: 33069069

An Orthogonal Seryl-tRNA Synthetase/tRNA Pair for Noncanonical Amino Acid Mutagenesis in Escherichia Coli

Overview
Journal Bioorg Med Chem
Specialties Biochemistry
Chemistry
Date 2020 Oct 17
PMID 33069069
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

We report the development of the orthogonal amber-suppressor pair Archaeoglobus fulgidus seryl-tRNA (Af-tRNA)/Methanosarcina mazei seryl-tRNA synthetase (MmSerRS) in Escherichia coli. Furthermore, the crystal structure of MmSerRS was solved at 1.45 Å resolution, which should enable structure-guided engineering of its active site to genetically encode small, polar noncanonical amino acids (ncAAs).

Citing Articles

Efficient genetic code expansion without host genome modifications.

Costello A, Peterson A, Lanster D, Li Z, Carver G, Badran A Nat Biotechnol. 2024; .

PMID: 39261591 DOI: 10.1038/s41587-024-02385-y.


Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.

Niu W, Guo J Chem Rev. 2024; 124(18):10577-10617.

PMID: 39207844 PMC: 11470805. DOI: 10.1021/acs.chemrev.3c00938.


Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.

Jann C, Giofre S, Bhattacharjee R, Lemke E Chem Rev. 2024; 124(18):10281-10362.

PMID: 39120726 PMC: 11441406. DOI: 10.1021/acs.chemrev.3c00878.


Orthogonal Translation for Site-Specific Installation of Post-translational Modifications.

Gan Q, Fan C Chem Rev. 2024; 124(5):2805-2838.

PMID: 38373737 PMC: 11230630. DOI: 10.1021/acs.chemrev.3c00850.


"Not-so-popular" orthogonal pairs in genetic code expansion.

Andrews J, Gan Q, Fan C Protein Sci. 2022; 32(2):e4559.

PMID: 36585833 PMC: 9850438. DOI: 10.1002/pro.4559.


References
1.
Landeka I, Zinic B . Characterization of yeast seryl-tRNA synthetase active site mutants with improved discrimination against substrate analogues. Biochim Biophys Acta. 2000; 1480(1-2):160-70. DOI: 10.1016/s0167-4838(00)00066-2. View

2.
Wan W, Tharp J, Liu W . Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta. 2014; 1844(6):1059-70. PMC: 4016821. DOI: 10.1016/j.bbapap.2014.03.002. View

3.
Lee S, Oh S, Yang A, Kim J, Soll D, Lee D . A facile strategy for selective incorporation of phosphoserine into histones. Angew Chem Int Ed Engl. 2013; 52(22):5771-5. PMC: 3775851. DOI: 10.1002/anie.201300531. View

4.
Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A . Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991; 252(5013):1682-9. DOI: 10.1126/science.2047877. View

5.
Itoh Y, Sekine S, Kuroishi C, Terada T, Shirouzu M, Kuramitsu S . Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii. RNA Biol. 2008; 5(3):169-77. DOI: 10.4161/rna.5.3.6876. View