» Articles » PMID: 33055154

Tailoring Nanocomposite Interfaces with Graphene to Achieve High Strength and Toughness

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Oct 15
PMID 33055154
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The nanofiller reinforcing effect in nanocomposites is often far below the theoretically predicted values, largely because of the poor interfacial interaction between the nanofillers and matrix. Here, we report that graphene-wrapped BC nanowires (BC-NWs@graphene) empowered exceptional dispersion of nanowires in matrix and superlative nanowire-matrix bonding. The 0.2 volume % BC-NWs@graphene reinforced epoxy composite exhibited simultaneous enhancements in strength (144.2 MPa), elastic modulus (3.5 GPa), and ductility (15%). Tailoring the composite interfaces with graphene enabled effective utilization of the nanofillers, resulting in two times increase in load transfer efficiency. Molecular dynamics simulations unlocked the shear mixing graphene/nanowire self-assembly mechanism. This low-cost yet effective technique presents unprecedented opportunities for improving nanocomposite interfaces, enabling high load transfer efficiency, and opens up a new path for developing strong and tough nanocomposites.

Citing Articles

Robust and Reprocessable Biorenewable Polyester Nanocomposites In Situ Catalyzed and Reinforced by Dendritic MXene@CNT Heterostructure.

Wang H, Ding J, Zhao H, Chu Q, Zhu J, Wang J Nanomicro Lett. 2025; 17(1):161.

PMID: 39992608 PMC: 11850687. DOI: 10.1007/s40820-025-01682-8.


London dispersion forces and steric effects within nanocomposites tune interaction energies and chain conformation.

Zhang B, Zaric S, Zrilic S, Gofman I, Heck B, Reiter G Commun Chem. 2025; 8(1):21.

PMID: 39865148 PMC: 11770184. DOI: 10.1038/s42004-025-01414-4.


Domain Growth in Polycrystalline Graphene.

Liu Z, Panja D, Barkema G Nanomaterials (Basel). 2023; 13(24).

PMID: 38133024 PMC: 10745787. DOI: 10.3390/nano13243127.


Scalable Manufacturing Process and Multifunctional Performance of Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Bio-Composites Coated by Graphene Oxide.

He Y, Wu S, Yuen A, Huang F, Boyer C, Wang C Polymers (Basel). 2022; 14(19).

PMID: 36235892 PMC: 9573032. DOI: 10.3390/polym14193946.


Unravelling the Influence of Surface Modification on the Ultimate Performance of Carbon Fiber/Epoxy Composites.

Demchuk Z, Zhu J, Li B, Zhao X, Islam N, Bocharova V ACS Appl Mater Interfaces. 2022; 14(40):45775-45787.

PMID: 36170969 PMC: 9562280. DOI: 10.1021/acsami.2c11281.


References
1.
Gao J, Itkis M, Yu A, Bekyarova E, Zhao B, Haddon R . Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc. 2005; 127(11):3847-54. DOI: 10.1021/ja0446193. View

2.
Lebedeva I, Knizhnik A, Popov A, Lozovik Y, Potapkin B . Interlayer interaction and relative vibrations of bilayer graphene. Phys Chem Chem Phys. 2011; 13(13):5687-95. DOI: 10.1039/c0cp02614j. View

3.
Liu Z, Suenaga K, Harris P, Iijima S . Open and closed edges of graphene layers. Phys Rev Lett. 2009; 102(1):015501. DOI: 10.1103/PhysRevLett.102.015501. View

4.
Lian H, Meng Z . Fabrication, characterization and osteoblast responses of poly (octanediol citrate)/bioglass nanofiber composites. Mater Sci Eng C Mater Biol Appl. 2018; 84:123-129. DOI: 10.1016/j.msec.2017.11.042. View

5.
Liao C, Wong H, Yeung K, Tjong S . The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers. Int J Nanomedicine. 2014; 9:1299-310. PMC: 3956629. DOI: 10.2147/IJN.S58332. View