» Articles » PMID: 33049519

SOD2 Deficiency in Cardiomyocytes Defines Defective Mitochondrial Bioenergetics As a Cause of Lethal Dilated Cardiomyopathy

Abstract

Electrophilic aldehyde (4-hydroxynonenal; 4-HNE), formed after lipid peroxidation, is a mediator of mitochondrial dysfunction and implicated in both the pathogenesis and the progression of cardiovascular disease. Manganese superoxide dismutase (MnSOD), a nuclear-encoded antioxidant enzyme, catalyzes the dismutation of superoxide radicals (O) in mitochondria. To study the role of MnSOD in the myocardium, we generated a cardiomyocyte-specific SOD2 (SOD2Δ) deficient mouse strain. Unlike global SOD2 knockout mice, SOD2Δ mice reached adolescence; however, they die at ~4 months of age due to heart failure. Ultrastructural analysis of SOD2Δ hearts revealed altered mitochondrial architecture, with prominent disruption of the cristae and vacuole formation. Noninvasive echocardiographic measurements in SOD2 mice showed dilated cardiomyopathic features such as decreased ejection fraction and fractional shortening along with increased left ventricular internal diameter. An increased incidence of ventricular tachycardia was observed during electrophysiological studies of the heart in SOD2Δ mice. Oxidative phosphorylation (OXPHOS) measurement using a Seahorse XF analyzer in SOD2Δ neonatal cardiomyocytes and adult cardiac mitochondria displayed reduced O consumption, particularly during basal conditions and after the addition of FCCP (H ionophore/uncoupler), compared to that in SOD2fl hearts. Measurement of extracellular acidification (ECAR) to examine glycolysis in these cells showed a pattern precisely opposite that of the oxygen consumption rate (OCR) among SOD2Δ mice compared to their SOD2 littermates. Analysis of the activity of the electron transport chain complex identified a reduction in Complex I and Complex V activity in SOD2Δ compared to SOD2fl mice. We demonstrated that a deficiency of SOD2 increases reactive oxygen species (ROS), leading to subsequent overproduction of 4-HNE inside mitochondria. Mechanistically, proteins in the mitochondrial respiratory chain complex and TCA cycle (NDUFS2, SDHA, ATP5B, and DLD) were the target of 4-HNE adduction in SOD2Δ hearts. Our findings suggest that the SOD2 mediated 4-HNE signaling nexus may play an important role in cardiomyopathy.

Citing Articles

Melatonin Exerts Positive Effects on Sepsis Through Various Beneficial Mechanisms.

Xu J, Liang C, Yao S, Wang F Drug Des Devel Ther. 2025; 19:1333-1345.

PMID: 40026332 PMC: 11871935. DOI: 10.2147/DDDT.S509735.


The Endogenous Expression of BMI1 in Adult Human Eyes.

Lu Z, Morales M, Liu S, Ramkumar H Cells. 2024; 13(19.

PMID: 39404434 PMC: 11475477. DOI: 10.3390/cells13191672.


Targeting DNM1L/DRP1-FIS1 axis inhibits high-grade glioma progression by impeding mitochondrial respiratory cristae remodeling.

Li X, Tie J, Sun Y, Gong C, Deng S, Chen X J Exp Clin Cancer Res. 2024; 43(1):273.

PMID: 39350223 PMC: 11440692. DOI: 10.1186/s13046-024-03194-6.


Unmasking Protein Phosphatase 2A Regulatory Subunit B as a Crucial Factor in the Progression of Dilated Cardiomyopathy.

Lin F, Liang X, Meng Y, Zhu Y, Li C, Zhou X Biomedicines. 2024; 12(8).

PMID: 39200351 PMC: 11352103. DOI: 10.3390/biomedicines12081887.


Mitochondrial Structure and Function in Human Heart Failure.

Hinton Jr A, Claypool S, Neikirk K, Senoo N, Wanjalla C, Kirabo A Circ Res. 2024; 135(2):372-396.

PMID: 38963864 PMC: 11225798. DOI: 10.1161/CIRCRESAHA.124.323800.


References
1.
Brown D, Perry J, Allen M, Sabbah H, Stauffer B, Shaikh S . Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2016; 14(4):238-250. PMC: 5350035. DOI: 10.1038/nrcardio.2016.203. View

2.
Fukai T, Ushio-Fukai M . Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011; 15(6):1583-606. PMC: 3151424. DOI: 10.1089/ars.2011.3999. View

3.
Chandra M, Escalante-Alcalde D, Bhuiyan M, Orr A, Kevil C, Morris A . Cardiac-specific inactivation of LPP3 in mice leads to myocardial dysfunction and heart failure. Redox Biol. 2017; 14:261-271. PMC: 5635346. DOI: 10.1016/j.redox.2017.09.015. View

4.
Lynch 4th T, Sivaguru M, Velayutham M, Cardounel A, Michels M, Barefield D . Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation. Oxid Med Cell Longev. 2015; 2015:424751. PMC: 4609873. DOI: 10.1155/2015/424751. View

5.
Ikon N, Ryan R . Barth Syndrome: Connecting Cardiolipin to Cardiomyopathy. Lipids. 2017; 52(2):99-108. PMC: 5288132. DOI: 10.1007/s11745-016-4229-7. View