» Articles » PMID: 21933140

Optimization of Cardiac Metabolism in Heart Failure

Overview
Journal Curr Pharm Des
Date 2011 Sep 22
PMID 21933140
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

The derangement of the cardiac energy substrate metabolism plays a key role in the pathogenesis of heart failure. The utilization of non-carbohydrate substrates, such as fatty acids, is the predominant metabolic pathway in the normal heart, because this provides the highest energy yield per molecule of substrate metabolized. In contrast, glucose becomes an important preferential substrate for metabolism and ATP generation under specific pathological conditions, because it can provide greater efficiency in producing high energy products per oxygen consumed compared to fatty acids. Manipulations that shift energy substrate utilization away from fatty acids toward glucose can improve the cardiac function and slow the progression of heart failure. However, insulin resistance, which is highly prevalent in the heart failure population, impedes this adaptive metabolic shift. Therefore, the acceleration of the glucose metabolism, along with the restoration of insulin sensitivity, would be the ideal metabolic therapy for heart failure. This review discusses the therapeutic potential of modifying substrate utilization to optimize cardiac metabolism in heart failure.

Citing Articles

Identifying risk factors and constructing a predictive model for heart failure combined with intracardiac thrombus in non-compaction cardiomyopathy patients.

Dang P, Wang H, Huo X, Liang Z, Zhang Y Sci Rep. 2025; 15(1):2121.

PMID: 39814828 PMC: 11735604. DOI: 10.1038/s41598-025-85902-6.


Sex-dependent adaptations in heart mitochondria from transgenic mice overexpressing cytochrome b reductase-3.

Sanchez-Mendoza L, Gonzalez-Reyes J, Rodriguez-Lopez S, Calvo-Rubio M, Calero-Rodriguez P, de Cabo R Mitochondrion. 2025; 81:102004.

PMID: 39793940 PMC: 11875916. DOI: 10.1016/j.mito.2025.102004.


Ceramides as Biomarkers of Cardiovascular Diseases and Heart Failure.

Augusto Jr S, Suresh A, Tang W Curr Heart Fail Rep. 2024; 22(1):2.

PMID: 39560878 DOI: 10.1007/s11897-024-00689-3.


Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond.

Sun Q, Karwi Q, Wong N, Lopaschuk G Cardiovasc Res. 2024; 120(16):1996-2016.

PMID: 39453987 PMC: 11646102. DOI: 10.1093/cvr/cvae231.


Potential mechanisms of metabolic reprogramming induced by ischemia-reperfusion injury in diabetic myocardium.

Ma H, Zhao J, Zheng Y, Wang J, Anwar Y, He Y J Diabetes. 2024; 16(10):e70018.

PMID: 39450829 PMC: 11503499. DOI: 10.1111/1753-0407.70018.


References
1.
Kim S, Abdellatif M, Koul S, Crystal G . Chronic treatment with insulin-like growth factor I enhances myocyte contraction by upregulation of Akt-SERCA2a signaling pathway. Am J Physiol Heart Circ Physiol. 2008; 295(1):H130-5. PMC: 2494754. DOI: 10.1152/ajpheart.00298.2008. View

2.
Rupp H, Vetter R . Sarcoplasmic reticulum function and carnitine palmitoyltransferase-1 inhibition during progression of heart failure. Br J Pharmacol. 2001; 131(8):1748-56. PMC: 1572500. DOI: 10.1038/sj.bjp.0703741. View

3.
Paolisso G, Gambardella A, Galzerano D, DAmore A, Rubino P, Verza M . Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism. 1994; 43(2):174-9. DOI: 10.1016/0026-0495(94)90241-0. View

4.
Stanley W, Recchia F, Lopaschuk G . Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85(3):1093-129. DOI: 10.1152/physrev.00006.2004. View

5.
Nikolaidis L, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L . Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004; 110(8):955-61. DOI: 10.1161/01.CIR.0000139339.85840.DD. View