» Articles » PMID: 33045113

The Nature of Nonclassical Carbonyl Ligands Explained By Kohn-Sham Molecular Orbital Theory

Overview
Journal Chemistry
Specialty Chemistry
Date 2020 Oct 12
PMID 33045113
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

When carbonyl ligands coordinate to transition metals, their bond distance either increases (classical) or decreases (nonclassical) with respect to the bond length in the isolated CO molecule. C-O expansion can easily be understood by π-back-donation, which results in a population of the CO's π*-antibonding orbital and hence a weakening of its bond. Nonclassical carbonyl ligands are less straightforward to explain, and their nature is still subject of an ongoing debate. In this work, we studied five isoelectronic octahedral complexes, namely Fe(CO) , Mn(CO) , Cr(CO) , V(CO) and Ti(CO) , at the ZORA-BLYP/TZ2P level of theory to explain this nonclassical behavior in the framework of Kohn-Sham molecular orbital theory. We show that there are two competing forces that affect the C-O bond length, namely electrostatic interactions (favoring C-O contraction) and π-back-donation (favoring C-O expansion). It is a balance between those two terms that determines whether the carbonyl is classical or nonclassical. By further decomposing the electrostatic interaction ΔV into four fundamental terms, we are able to rationalize why ΔV gives rise to the nonclassical behavior, leading to new insights into the driving forces behind C-O contraction.

Citing Articles

Towards clustered carbonyl cations [M(CO)] (M = Ru, Os): the need for innocent deelectronation.

Sellin M, Friedmann C, Maylander M, Richert S, Krossing I Chem Sci. 2022; 13(32):9147-9158.

PMID: 36093020 PMC: 9384829. DOI: 10.1039/d2sc02358j.


Modulation of Metal Carbonyl Stretching Frequencies in the Second Coordination Sphere through the Internal Stark Effect.

Parker G, Van Lommel R, Roig N, Alonso M, Chaplin A Chemistry. 2022; 28(69):e202202283.

PMID: 36082961 PMC: 10092048. DOI: 10.1002/chem.202202283.


Dipolar repulsion in α-halocarbonyl compounds revisited.

Rodrigues Silva D, de Azevedo Santos L, Hamlin T, Bickelhaupt F, Freitas M, Fonseca Guerra C Phys Chem Chem Phys. 2021; 23(37):20883-20891.

PMID: 34528039 PMC: 8479779. DOI: 10.1039/d1cp02502c.


The Nature of Nonclassical Carbonyl Ligands Explained by Kohn-Sham Molecular Orbital Theory.

van der Lubbe S, Vermeeren P, Fonseca Guerra C, Bickelhaupt F Chemistry. 2020; 26(67):15690-15699.

PMID: 33045113 PMC: 7756819. DOI: 10.1002/chem.202003768.

References
1.
van der Lubbe S, Vermeeren P, Fonseca Guerra C, Bickelhaupt F . The Nature of Nonclassical Carbonyl Ligands Explained by Kohn-Sham Molecular Orbital Theory. Chemistry. 2020; 26(67):15690-15699. PMC: 7756819. DOI: 10.1002/chem.202003768. View

2.
Lee , Yang , PARR . Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988; 37(2):785-789. DOI: 10.1103/physrevb.37.785. View

3.
Loipersberger M, Mao Y, Head-Gordon M . Variational Forward-Backward Charge Transfer Analysis Based on Absolutely Localized Molecular Orbitals: Energetics and Molecular Properties. J Chem Theory Comput. 2020; 16(2):1073-1089. DOI: 10.1021/acs.jctc.9b01168. View

4.
Vermeeren P, van der Lubbe S, Fonseca Guerra C, Bickelhaupt F, Hamlin T . Understanding chemical reactivity using the activation strain model. Nat Protoc. 2020; 15(2):649-667. DOI: 10.1038/s41596-019-0265-0. View

5.
Chen M, Zhang Q, Zhou M, Andrada D, Frenking G . Carbon monoxide bonding with BeO and BeCO3 : surprisingly high CO stretching frequency of OCBeCO3. Angew Chem Int Ed Engl. 2014; 54(1):124-8. DOI: 10.1002/anie.201406264. View