» Articles » PMID: 33045003

Fluorescent Secreted Bacterial Effectors Reveal Active Intravacuolar Proliferation of Listeria Monocytogenes in Epithelial Cells

Overview
Journal PLoS Pathog
Specialty Microbiology
Date 2020 Oct 12
PMID 33045003
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Real-time imaging of bacterial virulence factor dynamics is hampered by the limited number of fluorescent tools suitable for tagging secreted effectors. Here, we demonstrated that the fluorogenic reporter FAST could be used to tag secreted proteins, and we implemented it to monitor infection dynamics in epithelial cells exposed to the human pathogen Listeria monocytogenes (Lm). By tracking individual FAST-labelled vacuoles after Lm internalisation into cells, we unveiled the heterogeneity of residence time inside entry vacuoles. Although half of the bacterial population escaped within 13 minutes after entry, 12% of bacteria remained entrapped over an hour inside long term vacuoles, and sometimes much longer, regardless of the secretion of the pore-forming toxin listeriolysin O (LLO). We imaged LLO-FAST in these long-term vacuoles, and showed that LLO enabled Lm to proliferate inside these compartments, reminiscent of what had been previously observed for Spacious Listeria-containing phagosomes (SLAPs). Unexpectedly, inside epithelial SLAP-like vacuoles (eSLAPs), Lm proliferated as fast as in the host cytosol. eSLAPs thus constitute an alternative replication niche in epithelial cells that might promote the colonization of host tissues.

Citing Articles

Bacterial aggregation facilitates internalin-mediated invasion of .

Feltham L, Moran J, Goldrick M, Lord E, Spiller D, Cavet J Front Cell Infect Microbiol. 2024; 14:1411124.

PMID: 39045131 PMC: 11263170. DOI: 10.3389/fcimb.2024.1411124.


Anaerobic fluorescent reporters for live imaging of .

Tchagang C, Mah T, Campbell-Valois F Front Microbiol. 2023; 14:1245755.

PMID: 37928662 PMC: 10623331. DOI: 10.3389/fmicb.2023.1245755.


A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules.

Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H Sci Rep. 2022; 12(1):21961.

PMID: 36535993 PMC: 9763339. DOI: 10.1038/s41598-022-26037-w.


Recent Advancements in Tracking Bacterial Effector Protein Translocation.

Braet J, Catteeuw D, Van Damme P Microorganisms. 2022; 10(2).

PMID: 35208715 PMC: 8876096. DOI: 10.3390/microorganisms10020260.


Autotrophic lactate production from H + CO using recombinant and fluorescent FAST-tagged Acetobacterium woodii strains.

Mook A, Beck M, Baker J, Minton N, Durre P, Bengelsdorf F Appl Microbiol Biotechnol. 2022; 106(4):1447-1458.

PMID: 35092454 PMC: 8882112. DOI: 10.1007/s00253-022-11770-z.


References
1.
de Las Heras A, Cain R, Bielecka M, Vazquez-Boland J . Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol. 2011; 14(2):118-27. DOI: 10.1016/j.mib.2011.01.005. View

2.
Arnaud M, Chastanet A, Debarbouille M . New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol. 2004; 70(11):6887-91. PMC: 525206. DOI: 10.1128/AEM.70.11.6887-6891.2004. View

3.
Roche S, Velge P, Bottreau E, Durier C, Marquet-Van Der Mee N, Pardon P . Assessment of the virulence of Listeria monocytogenes: agreement between a plaque-forming assay with HT-29 cells and infection of immunocompetent mice. Int J Food Microbiol. 2001; 68(1-2):33-44. DOI: 10.1016/s0168-1605(01)00460-3. View

4.
Birmingham C, Canadien V, Kaniuk N, Steinberg B, Higgins D, Brumell J . Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature. 2008; 451(7176):350-4. DOI: 10.1038/nature06479. View

5.
Schuerch D, Wilson-Kubalek E, Tweten R . Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci U S A. 2005; 102(35):12537-42. PMC: 1194900. DOI: 10.1073/pnas.0500558102. View