» Articles » PMID: 16105950

Molecular Basis of Listeriolysin O PH Dependence

Overview
Specialty Science
Date 2005 Aug 18
PMID 16105950
Citations 84
Authors
Affiliations
Soon will be listed here.
Abstract

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that is an essential virulence factor of Listeria monocytogenes. LLO pore-forming activity is pH-dependent; it is active at acidic pH (<6), but not at neutral pH. In contrast to other pH-dependent toxins, we have determined that LLO pore-forming activity is controlled by a rapid and irreversible denaturation of its structure at neutral pH at temperatures >30 degrees C. Rapid denaturation is triggered at neutral pH by the premature unfolding of the domain 3 transmembrane beta-hairpins; structures that normally form the transmembrane beta-barrel. A triad of acidic residues within domain 3 function as the pH sensor and initiate the denaturation of LLO by destabilizing the structure of domain 3. These studies provide a view of a molecular mechanism by which the activity of a bacterial toxin is regulated by pH.

Citing Articles

A short-lived peptide signal regulates cell-to-cell communication in Listeria monocytogenes.

Bejder B, Monda F, Gless B, Bojer M, Ingmer H, Olsen C Commun Biol. 2024; 7(1):942.

PMID: 39097633 PMC: 11297923. DOI: 10.1038/s42003-024-06623-6.


Signals behind virulence mechanisms.

Meireles D, Pombinho R, Cabanes D Gut Microbes. 2024; 16(1):2369564.

PMID: 38979800 PMC: 11236296. DOI: 10.1080/19490976.2024.2369564.


The septin cytoskeleton is required for plasma membrane repair.

Prislusky M, Lam J, Contreras V, Ng M, Chamberlain M, Pathak-Sharma S EMBO Rep. 2024; 25(9):3870-3895.

PMID: 38969946 PMC: 11387490. DOI: 10.1038/s44319-024-00195-6.


The chaperone PrsA2 regulates the secretion, stability, and folding of listeriolysin O during infection.

Agbavor C, Zimnicka A, Kumar A, George J, Torres M, Prehna G mBio. 2024; 15(7):e0074324.

PMID: 38809022 PMC: 11253611. DOI: 10.1128/mbio.00743-24.


Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells.

Raab J, Hamilton D, Harju T, Huynh T, Russo B Infect Immun. 2024; 92(9):e0052423.

PMID: 38661369 PMC: 11385730. DOI: 10.1128/iai.00524-23.


References
1.
Shatursky O, Heuck A, Shepard L, Rossjohn J, Parker M, Johnson A . The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell. 1999; 99(3):293-9. DOI: 10.1016/s0092-8674(00)81660-8. View

2.
Morrill J, Mackinnon R . Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel. J Gen Physiol. 1999; 114(1):71-83. PMC: 2229637. DOI: 10.1085/jgp.114.1.71. View

3.
Heuck A, Hotze E, Tweten R, Johnson A . Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell. 2000; 6(5):1233-42. DOI: 10.1016/s1097-2765(00)00119-2. View

4.
Glomski I, Gedde M, Tsang A, Swanson J, Portnoy D . The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol. 2002; 156(6):1029-38. PMC: 2173464. DOI: 10.1083/jcb.200201081. View

5.
Ramachandran R, Heuck A, Tweten R, Johnson A . Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Biol. 2002; 9(11):823-7. DOI: 10.1038/nsb855. View