» Articles » PMID: 33039000

Diverse Applications of Artificial Intelligence in Neuroradiology

Overview
Specialties Neurology
Radiology
Date 2020 Oct 11
PMID 33039000
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Recent advances in artificial intelligence (AI) and deep learning (DL) hold promise to augment neuroimaging diagnosis for patients with brain tumors and stroke. Here, the authors review the diverse landscape of emerging neuroimaging applications of AI, including workflow optimization, lesion segmentation, and precision education. Given the many modalities used in diagnosing neurologic diseases, AI may be deployed to integrate across modalities (MR imaging, computed tomography, PET, electroencephalography, clinical and laboratory findings), facilitate crosstalk among specialists, and potentially improve diagnosis in patients with trauma, multiple sclerosis, epilepsy, and neurodegeneration. Together, there are myriad applications of AI for neuroradiology."

Citing Articles

Evaluation of multiple deep neural networks for detection of intracranial dural arteriovenous fistula on susceptibility weighted angiography imaging.

Sivan Sulaja J, Kannath S, Kalaparti Sri Venkata Ganesh V, Thomas B Neuroradiol J. 2024; 38(1):72-78.

PMID: 39089849 PMC: 11571296. DOI: 10.1177/19714009241269491.


Changes in MRI Workflow of Multiple Sclerosis after Introduction of an AI-Software: A Qualitative Study.

Rathmann E, Hemkemeier P, Raths S, Grothe M, Mankertz F, Hosten N Healthcare (Basel). 2024; 12(10).

PMID: 38786390 PMC: 11121325. DOI: 10.3390/healthcare12100978.


The new era of artificial intelligence in neuroradiology: current research and promising tools.

Carvalho Macruz F, Dias A, Andrade C, Penteado Nucci M, de Medeiros Rimkus C, Lucato L Arq Neuropsiquiatr. 2024; 82(6):1-12.

PMID: 38565188 PMC: 10987255. DOI: 10.1055/s-0044-1779486.


Artificial Intelligence Analysis Using MRI and PET Imaging in Gliomas: A Narrative Review.

Alongi P, Arnone A, Vultaggio V, Fraternali A, Versari A, Casali C Cancers (Basel). 2024; 16(2).

PMID: 38254896 PMC: 10814838. DOI: 10.3390/cancers16020407.


Evaluation of CINA® LVO artificial intelligence software for detection of large vessel occlusion in brain CT angiography.

Mellander H, Hillal A, Ullberg T, Wasselius J Eur J Radiol Open. 2024; 12:100542.

PMID: 38188638 PMC: 10764253. DOI: 10.1016/j.ejro.2023.100542.


References
1.
Odish O, Johnsen K, van Someren P, Roos R, Van Dijk J . EEG may serve as a biomarker in Huntington's disease using machine learning automatic classification. Sci Rep. 2018; 8(1):16090. PMC: 6208376. DOI: 10.1038/s41598-018-34269-y. View

2.
Kriegeskorte N . Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing. Annu Rev Vis Sci. 2017; 1:417-446. DOI: 10.1146/annurev-vision-082114-035447. View

3.
Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D . Interpretive Error in Radiology. AJR Am J Roentgenol. 2016; 208(4):739-749. DOI: 10.2214/AJR.16.16963. View

4.
Steinkamp J, Chambers C, Lalevic D, Zafar H, Cook T . Automated Organ-Level Classification of Free-Text Pathology Reports to Support a Radiology Follow-up Tracking Engine. Radiol Artif Intell. 2021; 1(5):e180052. PMC: 8017395. DOI: 10.1148/ryai.2019180052. View

5.
Vieira S, Pinaya W, Mechelli A . Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev. 2017; 74(Pt A):58-75. DOI: 10.1016/j.neubiorev.2017.01.002. View