Hopson J, Ellis S, Flaus A, McGinnity C, Neji R, Reader A
IEEE Trans Radiat Plasma Med Sci. 2025; :1.
PMID: 40008384
PMC: 7617360.
DOI: 10.1109/TRPMS.2024.3496779.
Yu X, Hu D, Yao Q, Fu Y, Zhong Y, Wang J
Biomed Eng Online. 2025; 24(1):16.
PMID: 39924498
PMC: 11807330.
DOI: 10.1186/s12938-025-01348-x.
Yu B, Ozdemir S, Dong Y, Shao W, Pan T, Shi K
Eur J Nucl Med Mol Imaging. 2025; .
PMID: 39912940
DOI: 10.1007/s00259-025-07122-4.
Huang C, Yu Z, Gao Z, Shen Q, Chan Q, Wong V
Quant Imaging Med Surg. 2025; 15(1):921-930.
PMID: 39839039
PMC: 11744162.
DOI: 10.21037/qims-24-1507.
Nakashima M, Fukui R, Sugimoto S, Iguchi T
Radiol Phys Technol. 2024; 18(1):47-57.
PMID: 39441494
DOI: 10.1007/s12194-024-00853-3.
Deep learning-based techniques for estimating high-quality full-dose positron emission tomography images from low-dose scans: a systematic review.
Seyyedi N, Ghafari A, Seyyedi N, Sheikhzadeh P
BMC Med Imaging. 2024; 24(1):238.
PMID: 39261796
PMC: 11391655.
DOI: 10.1186/s12880-024-01417-y.
An effective no-reference image quality index prediction with a hybrid Artificial Intelligence approach for denoised MRI images.
Radhabai P, Kvn K, Shanmugam A, Imoize A
BMC Med Imaging. 2024; 24(1):208.
PMID: 39134983
PMC: 11318287.
DOI: 10.1186/s12880-024-01387-1.
Clinical evaluation of deep learning-enhanced lymphoma pet imaging with accelerated acquisition.
Li X, Pan B, Chen C, Yan D, Pan Z, Feng T
J Appl Clin Med Phys. 2024; 25(9):e14390.
PMID: 38812107
PMC: 11492391.
DOI: 10.1002/acm2.14390.
Full-dose whole-body PET synthesis from low-dose PET using high-efficiency denoising diffusion probabilistic model: PET consistency model.
Pan S, Abouei E, Peng J, Qian J, Wynne J, Wang T
Med Phys. 2024; 51(8):5468-5478.
PMID: 38588512
PMC: 11321936.
DOI: 10.1002/mp.17068.
Empowering PET: harnessing deep learning for improved clinical insight.
Artesani A, Bruno A, Gelardi F, Chiti A
Eur Radiol Exp. 2024; 8(1):17.
PMID: 38321340
PMC: 10847083.
DOI: 10.1186/s41747-023-00413-1.
Reducing pediatric total-body PET/CT imaging scan time with multimodal artificial intelligence technology.
Zhang Q, Hu Y, Zhou C, Zhao Y, Zhang N, Zhou Y
EJNMMI Phys. 2024; 11(1):1.
PMID: 38165551
PMC: 10761657.
DOI: 10.1186/s40658-023-00605-z.
One-tenth-activity total-body positron emission tomography versus full-activity imaging in patients with a complex of hepatic malignant tumors: a retrospective study.
Liu G, Tan H, Sui X, Qi C, Cao Y, Cai D
Quant Imaging Med Surg. 2023; 13(12):8517-8530.
PMID: 38106244
PMC: 10722061.
DOI: 10.21037/qims-23-719.
Machine Learning in PET: from Photon Detection to Quantitative Image Reconstruction.
Gong K, Eric Berg , Cherry S, Qi J
Proc IEEE Inst Electr Electron Eng. 2023; 108(1):51-68.
PMID: 38045770
PMC: 10691821.
DOI: 10.1109/JPROC.2019.2936809.
Artificial Intelligence and Deep Learning for Advancing PET Image Reconstruction: State-of-the-Art and Future Directions.
Hellwig D, Hellwig N, Boehner S, Fuchs T, Fischer R, Schmidt D
Nuklearmedizin. 2023; 62(6):334-342.
PMID: 37995706
PMC: 10689088.
DOI: 10.1055/a-2198-0358.
Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability.
Muller F, Vervenne B, Maebe J, Blankemeyer E, Sellmyer M, Zhou R
Mol Imaging Biol. 2023; 26(1):101-113.
PMID: 37875748
DOI: 10.1007/s11307-023-01866-x.
FedFTN: Personalized federated learning with deep feature transformation network for multi-institutional low-count PET denoising.
Zhou B, Xie H, Liu Q, Chen X, Guo X, Feng Z
Med Image Anal. 2023; 90:102993.
PMID: 37827110
PMC: 10611438.
DOI: 10.1016/j.media.2023.102993.
Federated Transfer Learning for Low-dose PET Denoising: A Pilot Study with Simulated Heterogeneous Data.
Zhou B, Miao T, Mirian N, Chen X, Xie H, Feng Z
IEEE Trans Radiat Plasma Med Sci. 2023; 7(3):284-295.
PMID: 37789946
PMC: 10544830.
DOI: 10.1109/trpms.2022.3194408.
PET image denoising based on denoising diffusion probabilistic model.
Gong K, Johnson K, El Fakhri G, Li Q, Pan T
Eur J Nucl Med Mol Imaging. 2023; 51(2):358-368.
PMID: 37787849
PMC: 10958486.
DOI: 10.1007/s00259-023-06417-8.
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.
Kevin Zhou S, Greenspan H, Davatzikos C, Duncan J, van Ginneken B, Madabhushi A
Proc IEEE Inst Electr Electron Eng. 2023; 109(5):820-838.
PMID: 37786449
PMC: 10544772.
DOI: 10.1109/JPROC.2021.3054390.
Review and Prospect: Artificial Intelligence in Advanced Medical Imaging.
Wang S, Cao G, Wang Y, Liao S, Wang Q, Shi J
Front Radiol. 2023; 1:781868.
PMID: 37492170
PMC: 10365109.
DOI: 10.3389/fradi.2021.781868.