» Articles » PMID: 33031489

Mitochondrial Genome Evolution of Placozoans: Gene Rearrangements and Repeat Expansions

Overview
Date 2020 Oct 8
PMID 33031489
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Placozoans, nonbilaterian animals with the simplest known metazoan bauplan, are currently classified into 20 haplotypes belonging to three genera, Polyplacotoma, Trichoplax, and Hoilungia. The latter two comprise two and five clades, respectively. In Trichoplax and Hoilungia, previous studies on six haplotypes belonging to four different clades have shown that their mtDNAs are circular chromosomes of 32-43 kb in size, which encode 12 protein-coding genes, 24 tRNAs, and two rRNAs. These mitochondrial genomes (mitogenomes) also show unique features rarely seen in other metazoans, including open reading frames (ORFs) of unknown function, and group I and II introns. Here, we report seven new mitogenomes, covering the five previously described haplotypes H2, H17, H19, H9, and H11, as well as two new haplotypes, H23 (clade III) and H24 (clade VII). The overall gene content is shared between all placozoan mitochondrial genomes, but genome sizes, gene orders, and several exon-intron boundaries vary among clades. Phylogenomic analyses strongly support a tree topology different from previous 16S rRNA analyses, with clade VI as the sister group to all other Hoilungia clades. We found small inverted repeats in all 13 mitochondrial genomes of the Trichoplax and Hoilungia genera and evaluated their distribution patterns among haplotypes. Because Polyplacotoma mediterranea (H0), the sister to the remaining haplotypes, has a small mitochondrial genome with few small inverted repeats and ORFs, we hypothesized that the proliferation of inverted repeats and ORFs substantially contributed to the observed increase in the size and GC content of the Trichoplax and Hoilungia mitochondrial genomes.

Citing Articles

Pervasive Mitochondrial tRNA Gene Loss in Clade B of Haplosclerid Sponges (Porifera, Demospongiae).

Lavrov D, Turner T, Vicente J Genome Biol Evol. 2025; 17(3).

PMID: 39913674 PMC: 11886574. DOI: 10.1093/gbe/evaf020.


Long-term dynamics of placozoan culture: emerging models for population and space biology.

Romanova D, Povernov A, Nikitin M, Borman S, Frank Y, Moroz L Front Cell Dev Biol. 2025; 12():1514553.

PMID: 39845085 PMC: 11751234. DOI: 10.3389/fcell.2024.1514553.


Assembly, Annotation, and Comparative Analysis of Mitochondrial Genomes in .

Wang X, Wang Z, Yang F, Lin R, Liu T Int J Mol Sci. 2024; 25(22).

PMID: 39596209 PMC: 11594488. DOI: 10.3390/ijms252212140.


The placozoan Trichoplax.

Leria M, Requin M, Le Bivic A, Pasini A Nat Methods. 2024; 21(4):543-545.

PMID: 38609555 DOI: 10.1038/s41592-024-02228-3.


Beauty in the beast - Placozoan biodiversity explored through molluscan predator genomics.

Eitel M, Osigus H, Brenzinger B, Worheide G Ecol Evol. 2024; 14(4):e11220.

PMID: 38606341 PMC: 11007570. DOI: 10.1002/ece3.11220.


References
1.
Shamanskiy V, Timonina V, Popadin K, Gunbin K . ImtRDB: a database and software for mitochondrial imperfect interspersed repeats annotation. BMC Genomics. 2019; 20(Suppl 3):295. PMC: 6614062. DOI: 10.1186/s12864-019-5536-1. View

2.
cechova J, Lysek J, Bartas M, Brazda V . Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability. Bioinformatics. 2017; 34(7):1081-1085. PMC: 6030915. DOI: 10.1093/bioinformatics/btx729. View

3.
Voigt O, Collins A, Pearse V, Pearse J, Ender A, Hadrys H . Placozoa -- no longer a phylum of one. Curr Biol. 2004; 14(22):R944-5. DOI: 10.1016/j.cub.2004.10.036. View

4.
Boore J . Animal mitochondrial genomes. Nucleic Acids Res. 1999; 27(8):1767-80. PMC: 148383. DOI: 10.1093/nar/27.8.1767. View

5.
Ighem Chi S, Urbarova I, Johansen S . Expression of homing endonuclease gene and insertion-like element in sea anemone mitochondrial genomes: Lesson learned from Anemonia viridis. Gene. 2018; 652:78-86. DOI: 10.1016/j.gene.2018.01.067. View