» Articles » PMID: 33022912

Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe

Overview
Journal Foods
Specialty Biotechnology
Date 2020 Oct 7
PMID 33022912
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.

Citing Articles

Deciphering nutrient stress in plants: integrative insight from metabolomics and proteomics.

Moshood A, Abdulraheem M, Li L, Zhang Y, Raghavan V, Hu J Funct Integr Genomics. 2025; 25(1):38.

PMID: 39955391 DOI: 10.1007/s10142-025-01551-y.


The prevalence of hydatid cyst in raw meat products: a global systematic review, meta-analysis, and meta-regression.

Fakhri Y, Omar S, Dadar M, Pilevar Z, Sahlabadi F, Torabbeigi M Sci Rep. 2024; 14(1):26094.

PMID: 39478044 PMC: 11525472. DOI: 10.1038/s41598-024-77168-1.


Proteomics Applications in : Unveiling the Host-Parasite Interactions and Therapeutic Target Discovery.

Deng B, Vanagas L, Alonso A, Angel S Pathogens. 2024; 13(1).

PMID: 38251340 PMC: 10821451. DOI: 10.3390/pathogens13010033.


Metabolomic analysis reveals a differential adaptation process of the larval stages of to the host environment.

Polak I, Stryinski R, Majewska M, Lopienska-Biernat E Front Mol Biosci. 2023; 10:1233586.

PMID: 37520327 PMC: 10373882. DOI: 10.3389/fmolb.2023.1233586.


Proteomic characterization of extracellular vesicles released by third stage larvae of the zoonotic parasite (Nematoda: Anisakidae).

Palomba M, Rughetti A, Mignogna G, Castrignano T, Rahimi H, Masuelli L Front Cell Infect Microbiol. 2023; 13:1079991.

PMID: 37009516 PMC: 10050594. DOI: 10.3389/fcimb.2023.1079991.


References
1.
Ginger M, McKean P, Burchmore R, Grant K . Proteomic insights into parasite biology. Parasitology. 2012; 139(9):1101-2. DOI: 10.1017/S0031182012000947. View

2.
Herwaldt B . Cyclospora cayetanensis: a review, focusing on the outbreaks of cyclosporiasis in the 1990s. Clin Infect Dis. 2000; 31(4):1040-57. DOI: 10.1086/314051. View

3.
Barylyuk K, Koreny L, Ke H, Butterworth S, Crook O, Lassadi I . A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host Microbe. 2020; 28(5):752-766.e9. PMC: 7670262. DOI: 10.1016/j.chom.2020.09.011. View

4.
Sawanyawisuth K, Kitthaweesin K, Limpawattana P, Intapan P, Tiamkao S, Jitpimolmard S . Intraocular angiostrongyliasis: clinical findings, treatments and outcomes. Trans R Soc Trop Med Hyg. 2006; 101(5):497-501. DOI: 10.1016/j.trstmh.2006.07.010. View

5.
Liu S, Wang L, Zheng H, Xu Z, Roellig D, Li N . Comparative genomics reveals Cyclospora cayetanensis possesses coccidia-like metabolism and invasion components but unique surface antigens. BMC Genomics. 2016; 17:316. PMC: 4851813. DOI: 10.1186/s12864-016-2632-3. View