» Articles » PMID: 32985740

Variation at the Common Polysaccharide Antigen Locus Drives Lipopolysaccharide Diversity Within the Pseudomonas Syringae Species Complex

Overview
Date 2020 Sep 28
PMID 32985740
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The common polysaccharide antigen (CPA) of the lipopolysaccharide (LPS) from Pseudomonas syringae is highly variable, but the genetic basis for this is poorly understood. We have characterized the CPA locus from P. syringae pv. actinidiae (Psa). This locus has genes for l- and d-rhamnose biosynthesis and an operon coding for ABC transporter subunits, a bifunctional glycosyltransferase and an o-methyltransferase. This operon is predicted to have a role in the transport, elongation and termination of the CPA oligosaccharide and is referred to as the TET operon. Two alleles of the TET operon were present in different biovars (BV) of Psa and lineages of the closely related pathovar P. syringae pv. actinidifoliorum. This allelic variation was reflected in the electrophoretic properties of purified LPS from the different isolates. Gene knockout of the TET operon allele from BV1 and replacement with that from BV3, demonstrated the link between the genetic locus and the biochemical properties of the LPS molecules in Psa. Sequence analysis of the TET operon from a range of P. syringae and P. viridiflava isolates displayed a phylogenetic history incongruent with core gene phylogeny but correlates with previously reported tailocin sensitivity, suggesting a functional relationship between LPS structure and tailocin susceptibility.

Citing Articles

The potential of bacteriocins and bacteriophages to control bacterial disease of crops with a focus on spp.

Greer S, Rabiey M, Studholme D, Grant M J R Soc N Z. 2024; 55(2):302-326.

PMID: 39677383 PMC: 11639067. DOI: 10.1080/03036758.2024.2345315.


Nisin Inhibition of Gram-Negative Bacteria.

Charest A, Reed E, Bozorgzadeh S, Hernandez L, Getsey N, Smith L Microorganisms. 2024; 12(6).

PMID: 38930612 PMC: 11205666. DOI: 10.3390/microorganisms12061230.


A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria.

Backman T, Latorre S, Symeonidi E, Muszynski A, Bleak E, Eads L Science. 2024; 384(6701):eado0713.

PMID: 38870284 PMC: 11404688. DOI: 10.1126/science.ado0713.


Antibacterial synergy between a phage endolysin and citric acid against the Gram-negative kiwifruit pathogen pv. .

Sisson H, Fagerlund R, Jackson S, Briers Y, Warring S, Fineran P Appl Environ Microbiol. 2024; 90(3):e0184623.

PMID: 38319087 PMC: 10952447. DOI: 10.1128/aem.01846-23.


Pantailocins: phage-derived bacteriocins from and subsp. .

Stice S, Jan H, Chen H, Nwosu L, Shin G, Weaver S Appl Environ Microbiol. 2023; 89(12):e0092923.

PMID: 37982620 PMC: 10870728. DOI: 10.1128/aem.00929-23.


References
1.
Ey P, Prowse S, JENKIN C . Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978; 15(7):429-36. DOI: 10.1016/0161-5890(78)90070-6. View

2.
McCann H, Li L, Liu Y, Li D, Pan H, Zhong C . Origin and Evolution of the Kiwifruit Canker Pandemic. Genome Biol Evol. 2017; 9(4):932-944. PMC: 5388287. DOI: 10.1093/gbe/evx055. View

3.
Vanneste J, Yu J, Cornish D, Tanner D, Windner R, Chapman J . Identification, Virulence, and Distribution of Two Biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Dis. 2019; 97(6):708-719. DOI: 10.1094/PDIS-07-12-0700-RE. View

4.
Wyres K, Gorrie C, Edwards D, Wertheim H, Hsu L, Van Kinh N . Extensive Capsule Locus Variation and Large-Scale Genomic Recombination within the Klebsiella pneumoniae Clonal Group 258. Genome Biol Evol. 2015; 7(5):1267-79. PMC: 4453057. DOI: 10.1093/gbe/evv062. View

5.
Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M . Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS One. 2011; 6(11):e27297. PMC: 3223175. DOI: 10.1371/journal.pone.0027297. View