Short-term Depression and Long-term Plasticity Together Tune Sensitive Range of Synaptic Plasticity
Overview
Authors
Affiliations
Synaptic efficacy is subjected to activity-dependent changes on short- and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a lifetime and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short- and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short- and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates.
Jiang H, Qi G, Duarte R, Feldmeyer D, van Albada S Cereb Cortex. 2024; 34(9.
PMID: 39344196 PMC: 11439972. DOI: 10.1093/cercor/bhae378.
Temperature effect on a weighted vortex spin-torque nano-oscillator for neuromorphic computing.
Li R, Rezaeiyan Y, Bohnert T, Schulman A, Ferreira R, Farkhani H Sci Rep. 2024; 14(1):10043.
PMID: 38698145 PMC: 11065860. DOI: 10.1038/s41598-024-60929-3.
Making time and space for calcium control of neuron activity.
Jedrzejewska-Szmek J, Dorman D, Blackwell K Curr Opin Neurobiol. 2023; 83:102804.
PMID: 37913687 PMC: 10842147. DOI: 10.1016/j.conb.2023.102804.
A stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme dynamics.
Rodrigues Y, Tigaret C, Marie H, ODonnell C, Veltz R Elife. 2023; 12.
PMID: 37589251 PMC: 10435238. DOI: 10.7554/eLife.80152.
Stanika R, Obermair G Bio Protoc. 2023; 13(14):e4761.
PMID: 37497454 PMC: 10366995. DOI: 10.21769/BioProtoc.4761.