» Articles » PMID: 32973178

Optoribogenetic Control of Regulatory RNA Molecules

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Sep 25
PMID 32973178
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Short regulatory RNA molecules underpin gene expression and govern cellular state and physiology. To establish an alternative layer of control over these processes, we generated chimeric regulatory RNAs that interact reversibly and light-dependently with the light-oxygen-voltage photoreceptor PAL. By harnessing this interaction, the function of micro RNAs (miRs) and short hairpin (sh) RNAs in mammalian cells can be regulated in a spatiotemporally precise manner. The underlying strategy is generic and can be adapted to near-arbitrary target sequences. Owing to full genetic encodability, it establishes optoribogenetic control of cell state and physiology. The method stands to facilitate the non-invasive, reversible and spatiotemporally resolved study of regulatory RNAs and protein function in cellular and organismal environments.

Citing Articles

Optogenetic Tools for Regulating RNA Metabolism and Functions.

Zheng R, Xue Z, You M Chembiochem. 2024; 25(24):e202400615.

PMID: 39316432 PMC: 11666399. DOI: 10.1002/cbic.202400615.


Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation.

Poltronieri P Explor Target Antitumor Ther. 2024; 5(4):841-876.

PMID: 39280246 PMC: 11390297. DOI: 10.37349/etat.2024.00252.


Induction of bacterial expression at the mRNA level by light.

Ranzani A, Buchholz K, Blackholm M, Kopkin H, Moglich A Nucleic Acids Res. 2024; 52(16):10017-10028.

PMID: 39126322 PMC: 11381354. DOI: 10.1093/nar/gkae678.


An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells.

Pietruschka G, Ranzani A, Weber A, Patwari T, Pilsl S, Renzl C Adv Sci (Weinh). 2024; 11(12):e2304519.

PMID: 38227373 PMC: 10966536. DOI: 10.1002/advs.202304519.


Optogenetics meets physiology.

Ohnemus S, Vierock J, Schneider-Warme F Pflugers Arch. 2023; 475(12):1369-1373.

PMID: 38047968 PMC: 10730680. DOI: 10.1007/s00424-023-02887-9.


References
1.
Meister G, Tuschl T . Mechanisms of gene silencing by double-stranded RNA. Nature. 2004; 431(7006):343-9. DOI: 10.1038/nature02873. View

2.
Zamore P, Tuschl T, Sharp P, Bartel D . RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000; 101(1):25-33. DOI: 10.1016/S0092-8674(00)80620-0. View

3.
Hannon G . RNA interference. Nature. 2002; 418(6894):244-51. DOI: 10.1038/418244a. View

4.
Sambandan S, Akbalik G, Kochen L, Rinne J, Kahlstatt J, Glock C . Activity-dependent spatially localized miRNA maturation in neuronal dendrites. Science. 2017; 355(6325):634-637. DOI: 10.1126/science.aaf8995. View

5.
Wieland M, Hartig J . Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl. 2008; 47(14):2604-7. DOI: 10.1002/anie.200703700. View