» Articles » PMID: 32954053

Poly(lactic--glycolic Acid)-based Composite Bone-substitute Materials

Overview
Journal Bioact Mater
Date 2020 Sep 21
PMID 32954053
Citations 125
Authors
Affiliations
Soon will be listed here.
Abstract

Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics. Recently, poly(lactic--glycolic acid) (PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility, degradability, mechanical properties, and capabilities to promote bone regeneration. In this article, we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances, elaborate on their applications for bone regeneration with or without bioactive factors, and prospect the challenges and opportunities in clinical bone regeneration.

Citing Articles

Optimizing β-TCP with E-rhBMP-2-infused fibrin for vertical bone regeneration in a mouse calvarium model.

Zhao K, Ono M, Mu X, Wang Z, Xie S, Yonezawa T Regen Biomater. 2025; 12:rbae144.

PMID: 39990519 PMC: 11846664. DOI: 10.1093/rb/rbae144.


β-ecdysone/PLGA composite scaffolds promote skull defect healing in diabetic rat.

Luo Y, Wu Z, Zhang Y, Qiao Y, Wei Y, Yan X Front Bioeng Biotechnol. 2025; 12:1536102.

PMID: 39872465 PMC: 11770018. DOI: 10.3389/fbioe.2024.1536102.


Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential.

Tian W, Liu Y, Han B, Cheng F, Yang K, Hu W Bioact Mater. 2025; 45():584-598.

PMID: 39811246 PMC: 11732114. DOI: 10.1016/j.bioactmat.2024.11.036.


Biomimetic Natural Biomaterial Nanocomposite Scaffolds: A Rising Prospect for Bone Replacement.

Zaczek-Moczydlowska M, Joszko K, Kavoosi M, Markowska A, Likus W, Ghavami S Int J Mol Sci. 2025; 25(24.

PMID: 39769231 PMC: 11678580. DOI: 10.3390/ijms252413467.


Antisolvent 3D Printing of Gene-Activated Scaffolds for Bone Regeneration.

Vasilyev A, Nedorubova I, Chernomyrdina V, Meglei A, Basina V, Mironov A Int J Mol Sci. 2025; 25(24.

PMID: 39769064 PMC: 11678707. DOI: 10.3390/ijms252413300.


References
1.
Correia S, Pereira H, Silva-Correia J, van Dijk C, Espregueira-Mendes J, Oliveira J . Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface. 2013; 11(92):20130784. PMC: 3899856. DOI: 10.1098/rsif.2013.0784. View

2.
Cui L, Zhang J, Zou J, Yang X, Guo H, Tian H . Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials. 2019; 230:119617. DOI: 10.1016/j.biomaterials.2019.119617. View

3.
Avval P, Klika V, Bougherara H . Predicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical model. J Biomech Eng. 2014; 136(5):051002. DOI: 10.1115/1.4026642. View

4.
Rainer A, Spadaccio C, Sedati P, De Marco F, Carotti S, Lusini M . Electrospun hydroxyapatite-functionalized PLLA scaffold: potential applications in sternal bone healing. Ann Biomed Eng. 2011; 39(7):1882-90. DOI: 10.1007/s10439-011-0289-2. View

5.
Wascher D, Bulthuis L . Extremity trauma: field management of sports injuries. Curr Rev Musculoskelet Med. 2014; 7(4):387-93. PMC: 4596220. DOI: 10.1007/s12178-014-9242-y. View