» Articles » PMID: 32941607

Detection of PreQ0 Deazaguanine Modifications in Bacteriophage CAjan DNA Using Nanopore Sequencing Reveals Same Hypermodification at Two Distinct DNA Motifs

Overview
Specialty Biochemistry
Date 2020 Sep 17
PMID 32941607
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

In the constant evolutionary battle against mobile genetic elements (MGEs), bacteria have developed several defense mechanisms, some of which target the incoming, foreign nucleic acids e.g. restriction-modification (R-M) or CRISPR-Cas systems. Some of these MGEs, including bacteriophages, have in turn evolved different strategies to evade these hurdles. It was recently shown that the siphophage CAjan and 180 other viruses use 7-deazaguanine modifications in their DNA to evade bacterial R-M systems. Among others, phage CAjan genome contains a gene coding for a DNA-modifying homolog of a tRNA-deazapurine modification enzyme, together with four 7-cyano-7-deazaguanine synthesis genes. Using the CRISPR-Cas9 genome editing tool combined with the Nanopore Sequencing (ONT) we showed that the 7-deazaguanine modification in the CAjan genome is dependent on phage-encoded genes. The modification is also site-specific and is found mainly in two separate DNA sequence contexts: GA and GGC. Homology modeling of the modifying enzyme DpdA provides insight into its probable DNA binding surface and general mode of DNA recognition.

Citing Articles

Novel bacteriophages targeting wheat phyllosphere bacteria carry DNA modifications and single-strand breaks.

Dougherty P, Pedersen M, Forero-Junco L, Carstens A, Raaijmakers J, Riber L Virus Res. 2025; 352:199524.

PMID: 39742975 PMC: 11780129. DOI: 10.1016/j.virusres.2024.199524.


The complete genome sequence of unculturable obtained through clinical metagenomic next-generation sequencing.

Sabat A, Durfee T, Baldwin S, Akkerboom V, Voss A, Friedrich A Front Cell Infect Microbiol. 2024; 14:1368923.

PMID: 38694516 PMC: 11062135. DOI: 10.3389/fcimb.2024.1368923.


Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages.

de Crecy-Lagard V, Hutinet G, Cediel-Becerra J, Yuan Y, Zallot R, Chevrette M Microbiol Mol Biol Rev. 2024; 88(1):e0019923.

PMID: 38421302 PMC: 10966956. DOI: 10.1128/mmbr.00199-23.


Complete genome sequence of phage Knedl.

Maffei E, Manner C, Jenal U, Harms A Microbiol Resour Announc. 2024; 13(4):e0117423.

PMID: 38393330 PMC: 11008142. DOI: 10.1128/mra.01174-23.


Detection of queuosine and queuosine precursors in tRNAs by direct RNA sequencing.

Sun Y, Piechotta M, Naarmann-de Vries I, Dieterich C, Ehrenhofer-Murray A Nucleic Acids Res. 2023; 51(20):11197-11212.

PMID: 37811872 PMC: 10639084. DOI: 10.1093/nar/gkad826.


References
1.
Ishitani R, Nureki O, Fukai S, Kijimoto T, Nameki N, Watanabe M . Crystal structure of archaeosine tRNA-guanine transglycosylase. J Mol Biol. 2002; 318(3):665-77. DOI: 10.1016/S0022-2836(02)00090-6. View

2.
Carstens A, Kot W, Hansen L . Complete Genome Sequences of Four Novel Escherichia coli Bacteriophages Belonging to New Phage Groups. Genome Announc. 2015; 3(4). PMC: 4505120. DOI: 10.1128/genomeA.00741-15. View

3.
Thiaville J, Kellner S, Yuan Y, Hutinet G, Thiaville P, Jumpathong W . Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc Natl Acad Sci U S A. 2016; 113(11):E1452-9. PMC: 4801273. DOI: 10.1073/pnas.1518570113. View

4.
Samson J, Magadan A, Sabri M, Moineau S . Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013; 11(10):675-87. DOI: 10.1038/nrmicro3096. View

5.
Pomerantz A, Penafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma L . Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience. 2018; 7(4). PMC: 5905381. DOI: 10.1093/gigascience/giy033. View