» Articles » PMID: 32931756

ALS Genetics: Gains, Losses, and Implications for Future Therapies

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2020 Sep 15
PMID 32931756
Citations 159
Authors
Affiliations
Soon will be listed here.
Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by the loss of motor neurons from the brain and spinal cord. The ALS community has made remarkable strides over three decades by identifying novel familial mutations, generating animal models, elucidating molecular mechanisms, and ultimately developing promising new therapeutic approaches. Some of these approaches reduce the expression of mutant genes and are in human clinical trials, highlighting the need to carefully consider the normal functions of these genes and potential contribution of gene loss-of-function to ALS. Here, we highlight known loss-of-function mechanisms underlying ALS, potential consequences of lowering levels of gene products, and the need to consider both gain and loss of function to develop safe and effective therapeutic strategies.

Citing Articles

Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective.

Calvo B, Schembri-Wismayer P, Duran-Alonso M Cells. 2025; 14(5).

PMID: 40072076 PMC: 11898746. DOI: 10.3390/cells14050347.


Mitochondrial respiratory complex IV deficiency recapitulates amyotrophic lateral sclerosis.

Cheng M, Lu D, Li K, Wang Y, Tong X, Qi X Nat Neurosci. 2025; .

PMID: 40069360 DOI: 10.1038/s41593-025-01896-4.


Antiageing strategy for neurodegenerative diseases: from mechanisms to clinical advances.

Jiang Q, Liu J, Huang S, Wang X, Chen X, Liu G Signal Transduct Target Ther. 2025; 10(1):76.

PMID: 40059211 PMC: 11891338. DOI: 10.1038/s41392-025-02145-7.


Multi-functional role of apolipoprotein E in neurodegenerative diseases.

Islam S, Noorani A, Sun Y, Michikawa M, Zou K Front Aging Neurosci. 2025; 17:1535280.

PMID: 39944166 PMC: 11813892. DOI: 10.3389/fnagi.2025.1535280.


Application of antisense oligonucleotide drugs in amyotrophic lateral sclerosis and Huntington's disease.

Ou K, Jia Q, Li D, Li S, Li X, Yin P Transl Neurodegener. 2025; 14(1):4.

PMID: 39838446 PMC: 11748355. DOI: 10.1186/s40035-025-00466-9.


References
1.
Sellier C, Campanari M, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M . Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 2016; 35(12):1276-97. PMC: 4910533. DOI: 10.15252/embj.201593350. View

2.
Nguyen H, Van Mossevelde S, Dillen L, De Bleecker J, Moisse M, Van Damme P . NEK1 genetic variability in a Belgian cohort of ALS and ALS-FTD patients. Neurobiol Aging. 2017; 61:255.e1-255.e7. DOI: 10.1016/j.neurobiolaging.2017.08.021. View

3.
Kabashi E, Bercier V, Lissouba A, Liao M, Brustein E, Rouleau G . FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet. 2011; 7(8):e1002214. PMC: 3150442. DOI: 10.1371/journal.pgen.1002214. View

4.
Freibaum B, Lu Y, Lopez-Gonzalez R, Kim N, Almeida S, Lee K . GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015; 525(7567):129-33. PMC: 4631399. DOI: 10.1038/nature14974. View

5.
Renton A, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs J . A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011; 72(2):257-68. PMC: 3200438. DOI: 10.1016/j.neuron.2011.09.010. View