» Articles » PMID: 32927621

Mass Spectrometry and Structural Biology Techniques in the Studies on the Coronavirus-Receptor Interaction

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2020 Sep 15
PMID 32927621
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Mass spectrometry and some other biophysical methods, have made substantial contributions to the studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human proteins interactions. The most interesting feature of SARS-CoV-2 seems to be the structure of its spike (S) protein and its interaction with the human cell receptor. Mass spectrometry of spike S protein revealed how the glycoforms are distributed across the S protein surface. X-ray crystallography and cryo-electron microscopy made huge impact on the studies on the S protein and ACE2 receptor protein interaction, by elucidating the three-dimensional structures of these proteins and their conformational changes. The findings of the most recent studies in the scope of SARS-CoV-2-Human protein-protein interactions are described here.

Citing Articles

Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure.

Neira J Subcell Biochem. 2024; 105:207-245.

PMID: 39738948 DOI: 10.1007/978-3-031-65187-8_6.


Analytical Ultracentrifugation Detects Quaternary Rearrangements and Antibody-Induced Conformational Selection of the SARS-CoV-2 Spike Trimer.

Guerrini G, Mehn D, Fumagalli F, Gioria S, Pedotti M, Simonelli L Int J Mol Sci. 2023; 24(19).

PMID: 37834322 PMC: 10573103. DOI: 10.3390/ijms241914875.


Thermodynamic analysis of the interactions between human ACE2 and spike RBD of Betacoronaviruses (SARS-CoV-1 and SARS-CoV-2).

Rombel-Bryzek A, Miller A, Witkowska D FEBS Open Bio. 2022; 13(1):174-184.

PMID: 36416453 PMC: 9808565. DOI: 10.1002/2211-5463.13525.


Site-specific glycosylation of SARS-CoV-2: Big challenges in mass spectrometry analysis.

Campos D, Girgis M, Sanda M Proteomics. 2022; 22(15-16):e2100322.

PMID: 35700310 PMC: 9349404. DOI: 10.1002/pmic.202100322.


Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection.

Chapoval S, Keegan A Mol Med. 2021; 27(1):162.

PMID: 34961486 PMC: 8711287. DOI: 10.1186/s10020-021-00423-y.


References
1.
Weiskopf D, Schmitz K, Raadsen M, Grifoni A, Okba N, Endeman H . Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020; 5(48). PMC: 7319493. DOI: 10.1126/sciimmunol.abd2071. View

2.
Belouzard S, Chu V, Whittaker G . Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009; 106(14):5871-6. PMC: 2660061. DOI: 10.1073/pnas.0809524106. View

3.
Sikkema R, Farag E, Himatt S, Ibrahim A, Al-Romaihi H, Al-Marri S . Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Infection in Camel Workers in Qatar During 2013-2014: A Case-Control Study. J Infect Dis. 2017; 215(11):1702-1705. PMC: 7107360. DOI: 10.1093/infdis/jix174. View

4.
Koo J, Cook A, Park M, Sun Y, Sun H, Lim J . Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect Dis. 2020; 20(6):678-688. PMC: 7158571. DOI: 10.1016/S1473-3099(20)30162-6. View

5.
Tian X, Li C, Huang A, Xia S, Lu S, Shi Z . Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020; 9(1):382-385. PMC: 7048180. DOI: 10.1080/22221751.2020.1729069. View