» Articles » PMID: 32917678

Generating Multifunctional Acoustic Tweezers in Petri Dishes for Contactless, Precise Manipulation of Bioparticles

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Sep 12
PMID 32917678
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Acoustic tweezers are a promising technology for the biocompatible, precise manipulation of delicate bioparticles ranging from nanometer-sized exosomes to millimeter-sized zebrafish larva. However, their widespread usage is hindered by their low compatibility with the workflows in biological laboratories. Here, we present multifunctional acoustic tweezers that can manipulate bioparticles in a disposable Petri dish. Various functionalities including cell patterning, tissue engineering, concentrating particles, translating cells, stimulating cells, and cell lysis are demonstrated. Moreover, leaky surface acoustic wave-based holography is achieved by encoding required phases in electrode profiles of interdigitated transducers. This overcomes the frequency and resolution limits of previous holographic techniques to control three-dimensional acoustic beams in microscale. This study presents a favorable technique for noncontact and label-free manipulation of bioparticles in commonly used Petri dishes. It can be readily adopted by the biological and medical communities for cell studies, tissue generation, and regenerative medicine.

Citing Articles

Acoustofluidic tweezers via ring resonance.

Xu X, Jin K, Yang K, Zhong R, Liu M, Collyer W Sci Adv. 2024; 10(46):eads2654.

PMID: 39536110 PMC: 11559615. DOI: 10.1126/sciadv.ads2654.


Movable surface acoustic wave tweezers: a versatile toolbox for micromanipulation.

Qin X, Liu X, Liu S, Zhang C, Bai N, Li X Microsyst Nanoeng. 2024; 10(1):155.

PMID: 39468048 PMC: 11519341. DOI: 10.1038/s41378-024-00777-3.


Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation.

Wu M, Liao W Sensors (Basel). 2024; 24(19).

PMID: 39409397 PMC: 11478462. DOI: 10.3390/s24196342.


An Acoustofluidic Picoinjector.

Naquin T, Jain S, Zhang J, Xu X, Yao G, Naquin C Sens Actuators B Chem. 2024; 418.

PMID: 39131888 PMC: 11308560. DOI: 10.1016/j.snb.2024.136294.


Acousto-dielectric tweezers enable independent manipulation of multiple particles.

Shen L, Tian Z, Yang K, Rich J, Zhang J, Xia J Sci Adv. 2024; 10(32):eado8992.

PMID: 39110808 PMC: 11305384. DOI: 10.1126/sciadv.ado8992.


References
1.
Kim M, Park J, Lim H, Yoon S, Lee C, Chang J . Label-free analysis of the characteristics of a single cell trapped by acoustic tweezers. Sci Rep. 2017; 7(1):14092. PMC: 5658370. DOI: 10.1038/s41598-017-14572-w. View

2.
Chansoria P, Shirwaiker R . Characterizing the Process Physics of Ultrasound-Assisted Bioprinting. Sci Rep. 2019; 9(1):13889. PMC: 6761177. DOI: 10.1038/s41598-019-50449-w. View

3.
Patel M, Tovar A, Lee A . Lateral cavity acoustic transducer as an on-chip cell/particle microfluidic switch. Lab Chip. 2011; 12(1):139-45. DOI: 10.1039/c1lc20626e. View

4.
Marzo A, Caleap M, Drinkwater B . Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles. Phys Rev Lett. 2018; 120(4):044301. DOI: 10.1103/PhysRevLett.120.044301. View

5.
Armstrong J, Puetzer J, Serio A, Guex A, Kapnisi M, Breant A . Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. Adv Mater. 2018; 30(43):e1802649. PMC: 6386124. DOI: 10.1002/adma.201802649. View