» Articles » PMID: 32905027

Measuring Mobility to Monitor Travel and Physical Distancing Interventions: a Common Framework for Mobile Phone Data Analysis

Overview
Date 2020 Sep 9
PMID 32905027
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

A surge of interest has been noted in the use of mobility data from mobile phones to monitor physical distancing and model the spread of severe acute respiratory syndrome coronavirus 2, the virus that causes COVID-19. Despite several years of research in this area, standard frameworks for aggregating and making use of different data streams from mobile phones are scarce and difficult to generalise across data providers. Here, we examine aggregation principles and procedures for different mobile phone data streams and describe a common syntax for how aggregated data are used in research and policy. We argue that the principles of privacy and data protection are vital in assessing more technical aspects of aggregation and should be an important central feature to guide partnerships with governments who make use of research products.

Citing Articles

Bias in mobility datasets drives divergence in modeled outbreak dynamics.

Chin T, Johansson M, Chowdhury A, Chowdhury S, Hosan K, Quader M Commun Med (Lond). 2025; 5(1):8.

PMID: 39774250 PMC: 11706981. DOI: 10.1038/s43856-024-00714-5.


Using ANPR data to create an anonymized linked open dataset on urban bustle.

Van de Vyvere B, Colpaert P Eur Transp Res Rev. 2024; 14(1):17.

PMID: 38625190 PMC: 9035206. DOI: 10.1186/s12544-022-00538-1.


A Stochastic Mobility-Driven Spatially Explicit SEIQRD covid-19 Model with VOCs, Seasonality, and Vaccines.

Alleman T, Rollier M, Vergeynst J, Baetens J Appl Math Model. 2024; .

PMID: 38620163 PMC: 10306418. DOI: 10.1016/j.apm.2023.06.027.


Insights into population behavior during the COVID-19 pandemic from cell phone mobility data and manifold learning.

Levin R, Chao D, Wenger E, Proctor J Nat Comput Sci. 2024; 1(9):588-597.

PMID: 38217135 PMC: 10766515. DOI: 10.1038/s43588-021-00125-9.


A standardised differential privacy framework for epidemiological modeling with mobile phone data.

Savi M, Yadav A, Zhang W, Vembar N, Schroeder A, Balsari S PLOS Digit Health. 2023; 2(10):e0000233.

PMID: 37889905 PMC: 10610440. DOI: 10.1371/journal.pdig.0000233.


References
1.
Wesolowski A, Metcalf C, Eagle N, Kombich J, Grenfell B, Bjornstad O . Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. Proc Natl Acad Sci U S A. 2015; 112(35):11114-9. PMC: 4568255. DOI: 10.1073/pnas.1423542112. View

2.
Wesolowski A, Eagle N, Tatem A, Smith D, Noor A, Snow R . Quantifying the impact of human mobility on malaria. Science. 2012; 338(6104):267-70. PMC: 3675794. DOI: 10.1126/science.1223467. View

3.
Jia J, Lu X, Yuan Y, Xu G, Jia J, Christakis N . Population flow drives spatio-temporal distribution of COVID-19 in China. Nature. 2020; 582(7812):389-394. DOI: 10.1038/s41586-020-2284-y. View

4.
Buckee C, Wesolowski A, Eagle N, Hansen E, Snow R . Mobile phones and malaria: modeling human and parasite travel. Travel Med Infect Dis. 2013; 11(1):15-22. PMC: 3697114. DOI: 10.1016/j.tmaid.2012.12.003. View

5.
Rocher L, Hendrickx J, de Montjoye Y . Estimating the success of re-identifications in incomplete datasets using generative models. Nat Commun. 2019; 10(1):3069. PMC: 6650473. DOI: 10.1038/s41467-019-10933-3. View