» Articles » PMID: 23478045

Mobile Phones and Malaria: Modeling Human and Parasite Travel

Overview
Date 2013 Mar 13
PMID 23478045
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Human mobility plays an important role in the dissemination of malaria parasites between regions of variable transmission intensity. Asymptomatic individuals can unknowingly carry parasites to regions where mosquito vectors are available, for example, undermining control programs and contributing to transmission when they travel. Understanding how parasites are imported between regions in this way is therefore an important goal for elimination planning and the control of transmission, and would enable control programs to target the principal sources of malaria. Measuring human mobility has traditionally been difficult to do on a population scale, but the widespread adoption of mobile phones in low-income settings presents a unique opportunity to directly measure human movements that are relevant to the spread of malaria. Here, we discuss the opportunities for measuring human mobility using data from mobile phones, as well as some of the issues associated with combining mobility estimates with malaria infection risk maps to meaningfully estimate routes of parasite importation.

Citing Articles

Detecting imported malaria infections in endemic settings using molecular surveillance: current state and challenges.

Safarpour M, Cabrera-Sosa L, Gamboa D, Van Geertruyden J, Delgado-Ratto C Front Epidemiol. 2025; 5:1490141.

PMID: 40078574 PMC: 11897264. DOI: 10.3389/fepid.2025.1490141.


Human mobility and malaria risk in peri-urban and rural communities in the Peruvian Amazon.

Gomez J, Grosso A, Guzman-Guzman M, Garcia Castillo S, Castro M, Torres K PLoS Negl Trop Dis. 2025; 19(1):e0012058.

PMID: 39761298 PMC: 11737848. DOI: 10.1371/journal.pntd.0012058.


Spatiotemporal analysis of within-country imported malaria in Brazilian municipalities, 2004-2022.

Arisco N, Peterka C, Castro M PLOS Glob Public Health. 2024; 4(7):e0003452.

PMID: 39008438 PMC: 11249269. DOI: 10.1371/journal.pgph.0003452.


Study protocol: improving response to malaria in the Amazon through identification of inter-community networks and human mobility in border regions of Ecuador, Peru and Brazil.

Janko M, Araujo A, Ascencio E, Guedes G, Vasco L, Santos R BMJ Open. 2024; 14(4):e078911.

PMID: 38626977 PMC: 11029361. DOI: 10.1136/bmjopen-2023-078911.


Characterizing mobility patterns and malaria risk factors in semi-nomadic populations of Northern Kenya.

Meredith H, Wesolowski A, Okoth D, Maraga L, Ambani G, Chepkwony T PLOS Glob Public Health. 2024; 4(3):e0002750.

PMID: 38478562 PMC: 10936864. DOI: 10.1371/journal.pgph.0002750.


References
1.
Mueller I, Schoepflin S, Smith T, Benton K, Bretscher M, Lin E . Force of infection is key to understanding the epidemiology of Plasmodium falciparum malaria in Papua New Guinean children. Proc Natl Acad Sci U S A. 2012; 109(25):10030-5. PMC: 3382533. DOI: 10.1073/pnas.1200841109. View

2.
Smith D, Drakeley C, Chiyaka C, Hay S . A quantitative analysis of transmission efficiency versus intensity for malaria. Nat Commun. 2010; 1:108. PMC: 3065713. DOI: 10.1038/ncomms1107. View

3.
Metcalf C, Graham A, Huijben S, Barclay V, Long G, Grenfell B . Partitioning regulatory mechanisms of within-host malaria dynamics using the effective propagation number. Science. 2011; 333(6045):984-8. PMC: 3891600. DOI: 10.1126/science.1204588. View

4.
Gething P, Patil A, Smith D, Guerra C, Elyazar I, Johnston G . A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011; 10:378. PMC: 3274487. DOI: 10.1186/1475-2875-10-378. View

5.
Pearce R, Pota H, Evehe M, Ba E, Mombo-Ngoma G, Malisa A . Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med. 2009; 6(4):e1000055. PMC: 2661256. DOI: 10.1371/journal.pmed.1000055. View