» Articles » PMID: 32903346

Compressed Sensing MRI: a Review from Signal Processing Perspective

Overview
Journal BMC Biomed Eng
Date 2020 Sep 9
PMID 32903346
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic resonance imaging (MRI) is an inherently slow imaging modality, since it acquires multi-dimensional k-space data through 1-D free induction decay or echo signals. This often limits the use of MRI, especially for high resolution or dynamic imaging. Accordingly, many investigators has developed various acceleration techniques to allow fast MR imaging. For the last two decades, one of the most important breakthroughs in this direction is the introduction of compressed sensing (CS) that allows accurate reconstruction from sparsely sampled k-space data. The recent FDA approval of compressed sensing products for clinical scans clearly reflect the maturity of this technology. Therefore, this paper reviews the basic idea of CS and how this technology have been evolved for various MR imaging problems.

Citing Articles

Cardiac MR image reconstruction using cascaded hybrid dual domain deep learning framework.

Arshad M, Najeeb F, Khawaja R, Ammar A, Amjad K, Omer H PLoS One. 2025; 20(1):e0313226.

PMID: 39792851 PMC: 11723636. DOI: 10.1371/journal.pone.0313226.


Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU.

Millard C, Chiew M Bioengineering (Basel). 2025; 11(12.

PMID: 39768122 PMC: 11726718. DOI: 10.3390/bioengineering11121305.


Accelerated model-based T1, T2* and proton density mapping using a Bayesian approach with automatic hyperparameter estimation.

Huang S, Lah J, Allen J, Qiu D Magn Reson Med. 2024; 93(2):563-583.

PMID: 39270136 PMC: 11604832. DOI: 10.1002/mrm.30295.


Radiomic feature reliability of amide proton transfer-weighted MR images acquired with compressed sensing at 3T.

Wu J, Huang Q, Shen Y, Guo P, Zhou J, Jiang S Int J Imaging Syst Technol. 2024; 34(2).

PMID: 39185083 PMC: 11343505. DOI: 10.1002/ima.23027.


Accelerating breast MRI acquisition with generative AI models.

Okolie A, Dirrichs T, Huck L, Nebelung S, Arasteh S, Nolte T Eur Radiol. 2024; 35(2):1092-1100.

PMID: 39088043 PMC: 11782449. DOI: 10.1007/s00330-024-10853-x.


References
1.
Haldar J, Hernando D . Rank-Constrained Solutions to Linear Matrix Equations Using PowerFactorization. IEEE Signal Process Lett. 2012; 16(7):584-587. PMC: 3290097. DOI: 10.1109/LSP.2009.2018223. View

2.
Knoll F, Clason C, Bredies K, Uecker M, Stollberger R . Parallel imaging with nonlinear reconstruction using variational penalties. Magn Reson Med. 2011; 67(1):34-41. PMC: 4011127. DOI: 10.1002/mrm.22964. View

3.
Sodickson D, Manning W . Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997; 38(4):591-603. DOI: 10.1002/mrm.1910380414. View

4.
Knoll F, Bredies K, Pock T, Stollberger R . Second order total generalized variation (TGV) for MRI. Magn Reson Med. 2011; 65(2):480-91. PMC: 4011128. DOI: 10.1002/mrm.22595. View

5.
Lingala S, Hu Y, DiBella E, Jacob M . Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging. 2011; 30(5):1042-54. PMC: 3707502. DOI: 10.1109/TMI.2010.2100850. View