» Articles » PMID: 32902817

Mapping Thermal Physiology of Vector-Borne Diseases in a Changing Climate: Shifts in Geographic and Demographic Risk of Suitability

Overview
Date 2020 Sep 9
PMID 32902817
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose Of Review: To describe a collection of recent work published on thermal suitability for vector-borne diseases, in which mapping approaches illustrated the geographic shifts, and spatial approaches describe the demographic impact anticipated with a changing climate.

Recent Findings: While climate change predictions of warming indicate an expansion in VBD suitability risk in some parts of the globe, while in others, optimal temperatures for transmission may be exceeded, as seen for malaria in Western Africa, resulting in declining risk. The thermal suitability of specific vector-pathogen pairs can have large impacts on geographic range of risk, and changes in human demography itself will intersect with this risk to create different vulnerability profiles over the coming century. Using a physiological approach to describe the thermal suitability of transmission for vector-borne diseases allows us to illustrate the future risk as mapped information. This in turn can be coupled with demographic projections to anticipate changing risk, and even changing vulnerability within that population change.

Citing Articles

Evolutionary adaptation under climate change: sp. demonstrates potential to adapt to warming.

Couper L, Dodge T, Hemker J, Kim B, Exposito-Alonso M, Brem R Proc Natl Acad Sci U S A. 2025; 122(2):e2418199122.

PMID: 39772738 PMC: 11745351. DOI: 10.1073/pnas.2418199122.


Evolutionary adaptation under climate change: sp. demonstrates potential to adapt to warming.

Couper L, Dodge T, Hemker J, Kim B, Exposito-Alonso M, Brem R bioRxiv. 2024; .

PMID: 39229052 PMC: 11370604. DOI: 10.1101/2024.08.23.609454.


Mapping environmental suitability changes for arbovirus mosquitoes in Southeast Asia: 1960-2020.

Hou W, Zhou Y, Luo W, Wang L, Kwan M, Cook A iScience. 2024; 27(8):110498.

PMID: 39165847 PMC: 11334785. DOI: 10.1016/j.isci.2024.110498.


Interconnecting global threats: climate change, biodiversity loss, and infectious diseases.

Pfenning-Butterworth A, Buckley L, Drake J, Farner J, Farrell M, Gehman A Lancet Planet Health. 2024; 8(4):e270-e283.

PMID: 38580428 PMC: 11090248. DOI: 10.1016/S2542-5196(24)00021-4.


Mapping current and future habitat suitability of Azolla spp., a biofertilizer for small-scale rice farming in Africa.

Ocloo X, Vazquez-Prokopec G, Civitello D PLoS One. 2023; 18(12):e0291009.

PMID: 38109403 PMC: 10727437. DOI: 10.1371/journal.pone.0291009.


References
1.
Kraemer M, Sinka M, Duda K, Mylne A, Shearer F, Barker C . The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015; 4:e08347. PMC: 4493616. DOI: 10.7554/eLife.08347. View

2.
Mordecai E, Caldwell J, Grossman M, Lippi C, Johnson L, Neira M . Thermal biology of mosquito-borne disease. Ecol Lett. 2019; 22(10):1690-1708. PMC: 6744319. DOI: 10.1111/ele.13335. View

3.
Bhatt S, Gething P, Brady O, Messina J, Farlow A, Moyes C . The global distribution and burden of dengue. Nature. 2013; 496(7446):504-7. PMC: 3651993. DOI: 10.1038/nature12060. View

4.
Samy A, Thomas S, Abd El Wahed A, Cohoon K, Peterson A . Mapping the global geographic potential of Zika virus spread. Mem Inst Oswaldo Cruz. 2016; 111(9):559-60. PMC: 5027865. DOI: 10.1590/0074-02760160149. View

5.
Rodrigues L . Microcephaly and Zika virus infection. Lancet. 2016; 387(10033):2070-2072. DOI: 10.1016/S0140-6736(16)00742-X. View