» Articles » PMID: 32874427

GENERALIZABLE MULTI-SITE TRAINING AND TESTING OF DEEP NEURAL NETWORKS USING IMAGE NORMALIZATION

Overview
Publisher IEEE
Date 2020 Sep 3
PMID 32874427
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The ability of medical image analysis deep learning algorithms to generalize across multiple sites is critical for clinical adoption of these methods. Medical imging data, especially MRI, can have highly variable intensity characteristics across different individuals, scanners, and sites. However, it is not practical to train algorithms with data from all imaging equipment sources at all possible sites. Intensity normalization methods offer a potential solution for working with multi-site data. We evaluate five different image normalization methods on training a deep neural network to segment the prostate gland in MRI. Using 600 MRI prostate gland segmentations from two different sites, our results show that both intra-site and inter-site evaluation is critical for assessing the robustness of trained models and that training with single-site data produces models that fail to fully generalize across testing data from sites not included in the training.

Citing Articles

Similarity and quality metrics for MR image-to-image translation.

Dohmen M, Klemens M, Baltruschat I, Truong T, Lenga M Sci Rep. 2025; 15(1):3853.

PMID: 39890963 PMC: 11785996. DOI: 10.1038/s41598-025-87358-0.


The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review.

Schwabe D, Becker K, Seyferth M, Klass A, Schaeffter T NPJ Digit Med. 2024; 7(1):203.

PMID: 39097662 PMC: 11297942. DOI: 10.1038/s41746-024-01196-4.


Evaluating the relationship between magnetic resonance image quality metrics and deep learning-based segmentation accuracy of brain tumors.

Muthusivarajan R, Celaya A, Yung J, Long J, Viswanath S, Marcus D Med Phys. 2024; 51(7):4898-4906.

PMID: 38640464 PMC: 11233231. DOI: 10.1002/mp.17059.


Atlas-based Semantic Segmentation of Prostate Zones.

Zhang J, Venkataraman R, Staib L, Onofrey J Med Image Comput Comput Assist Interv. 2023; 13435:570-579.

PMID: 38084296 PMC: 10711803. DOI: 10.1007/978-3-031-16443-9_55.


Three-dimensional label-free morphology of CD8 + T cells as a sepsis biomarker.

Sung M, Kim J, Min H, Jang S, Hong J, Choi B Light Sci Appl. 2023; 12(1):265.

PMID: 37932249 PMC: 10628166. DOI: 10.1038/s41377-023-01309-w.


References
1.
Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau N, Venugopal V . Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018; 392(10162):2388-2396. DOI: 10.1016/S0140-6736(18)31645-3. View

2.
Nyul L, Udupa J . On standardizing the MR image intensity scale. Magn Reson Med. 1999; 42(6):1072-81. DOI: 10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m. View

3.
Litjens G, Toth R, Van de Ven W, Hoeks C, Kerkstra S, van Ginneken B . Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal. 2014; 18(2):359-73. PMC: 4137968. DOI: 10.1016/j.media.2013.12.002. View

4.
Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M . A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42:60-88. DOI: 10.1016/j.media.2017.07.005. View

5.
Li Z, Hoiem D . Learning without Forgetting. IEEE Trans Pattern Anal Mach Intell. 2018; 40(12):2935-2947. DOI: 10.1109/TPAMI.2017.2773081. View