Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure
Overview
Affiliations
Titin is the largest human protein and an essential component of the cardiac sarcomere. With multiple immunoglobulin(Ig)-like domains that serve as molecular springs, titin contributes significantly to the passive tension, systolic function, and diastolic function of the heart. Mutations leading to early termination of titin are the most common genetic cause of dilated cardiomyopathy. Modifications of titin, which change protein length, and relative stiffness affect resting tension of the ventricle and are associated with acquired forms of heart failure. Transcriptional and post-translational changes that increase titin's length and extensibility, making the sarcomere longer and softer, are associated with systolic dysfunction and left ventricular dilation. Modifications of titin that decrease its length and extensibility, making the sarcomere shorter and stiffer, are associated with diastolic dysfunction in animal models. There has been significant progress in understanding the mechanisms by which titin is modified. As molecular pathways that modify titin's mechanical properties are elucidated, they represent therapeutic targets for treatment of both systolic and diastolic dysfunction. In this article, we review titin's contribution to normal cardiac physiology, the pathophysiology of titin truncation variations leading to dilated cardiomyopathy, and transcriptional and post-translational modifications of titin. Emphasis is on how modification of titin can be utilized as a therapeutic target for treatment of heart failure.
Nikonova E, DeCata J, Canela M, Barz C, Esser A, Bouterwek J PLoS Biol. 2024; 22(4):e3002575.
PMID: 38683844 PMC: 11081514. DOI: 10.1371/journal.pbio.3002575.
Assessing Cardiac Contractility From Single Molecules to Whole Hearts.
Garg A, Lavine K, Greenberg M JACC Basic Transl Sci. 2024; 9(3):414-439.
PMID: 38559627 PMC: 10978360. DOI: 10.1016/j.jacbts.2023.07.013.
Rees M, Nikoopour R, Alexandrovich A, Pfuhl M, Lopes L, Akhtar M J Struct Biol. 2023; 215(3):108009.
PMID: 37549721 PMC: 10862085. DOI: 10.1016/j.jsb.2023.108009.
[Recent studies on dilated cardiomyopathy caused by mutations in children].
Zheng K, Lou M Zhongguo Dang Dai Er Ke Za Zhi. 2023; 25(2):217-222.
PMID: 36854701 PMC: 9979384. DOI: 10.7499/j.issn.1008-8830.2208163.
RBM20, a Therapeutic Target to Alleviate Myocardial Stiffness Titin Isoforms Switching in HFpEF.
Li N, Hang W, Shu H, Zhou N Front Cardiovasc Med. 2022; 9:928244.
PMID: 35783855 PMC: 9243441. DOI: 10.3389/fcvm.2022.928244.