» Articles » PMID: 19406126

Stress-induced Dilated Cardiomyopathy in a Knock-in Mouse Model Mimicking Human Titin-based Disease

Abstract

Mutations in a variety of myofibrillar genes cause dilated cardiomyopathy (DCM) in humans, usually with dominant inheritance and incomplete penetrance. Here, we sought to clarify the functional effects of the previously identified DCM-causing TTN 2-bp insertion mutation (c.43628insAT) and generated a titin knock-in mouse model mimicking the c.43628insAT allele. Mutant embryos homozygous for the Ttn knock-in mutation developed defects in sarcomere formation and consequently died before E9.5. Heterozygous mice were viable and demonstrated normal cardiac morphology, function and muscle mechanics. mRNA and protein expression studies on heterozygous hearts demonstrated elevated wild-type titin mRNA under resting conditions, suggesting that up-regulation of the wild-type titin allele compensates for the unstable mutated titin under these conditions. When chronically exposed to angiotensin II or isoproterenol, heterozygous mice developed marked left ventricular dilatation (p<0.05) with impaired fractional shortening (p<0.001) and diffuse myocardial fibrosis (11.95+/-2.8% vs. 3.7+/-1.1%). Thus, this model mimics typical features of human dilated cardiomyopathy and may further our understanding of how titin mutations perturb cardiac function and remodel the heart.

Citing Articles

Regulation of TTN as a mechanism of and treatment for heart failure.

Fullenkamp D J Clin Invest. 2025; 135(4).

PMID: 39959973 PMC: 11827840. DOI: 10.1172/JCI189335.


Regulation of sarcomere formation and function in the healthy heart requires a titin intronic enhancer.

Kim Y, Kim S, Saul D, Neyazi M, Schmid M, Wakimoto H J Clin Invest. 2024; 135(4).

PMID: 39688912 PMC: 11827849. DOI: 10.1172/JCI183353.


Muscle-fiber specific genetic manipulation of sallimus severely impacts neuromuscular development, morphology, and physiology.

Michael A, Hana T, Mousa V, Ormerod K Front Physiol. 2024; 15:1429317.

PMID: 39351283 PMC: 11439786. DOI: 10.3389/fphys.2024.1429317.


In Vivo Approaches to Understand Arrhythmogenic Cardiomyopathy: Perspectives on Animal Models.

Risato G, Branas Casas R, Cason M, Bueno Marinas M, Pinci S, De Gaspari M Cells. 2024; 13(15).

PMID: 39120296 PMC: 11311808. DOI: 10.3390/cells13151264.


Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum.

Collins H, Alexander B, Care A, Davenport M, Davidge S, Eghbali M Am J Physiol Heart Circ Physiol. 2024; 327(1):H191-H220.

PMID: 38758127 PMC: 11380979. DOI: 10.1152/ajpheart.00055.2024.


References
1.
Miller M, Granzier H, Ehler E, Gregorio C . The sensitive giant: the role of titin-based stretch sensing complexes in the heart. Trends Cell Biol. 2004; 14(3):119-26. DOI: 10.1016/j.tcb.2004.01.003. View

2.
Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E . The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005; 308(5728):1599-603. DOI: 10.1126/science.1110463. View

3.
Nagueh S, Shah G, Wu Y, Torre-Amione G, King N, Lahmers S . Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation. 2004; 110(2):155-62. DOI: 10.1161/01.CIR.0000135591.37759.AF. View

4.
Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S . Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002; 30(2):201-4. DOI: 10.1038/ng815. View

5.
Schaart G, Viebahn C, Langmann W, Ramaekers F . Desmin and titin expression in early postimplantation mouse embryos. Development. 1989; 107(3):585-96. DOI: 10.1242/dev.107.3.585. View