» Articles » PMID: 32839596

Fructose Stimulated De Novo Lipogenesis is Promoted by Inflammation

Abstract

Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.

Citing Articles

Relationship Between FODMAP Diet and Irritable Bowel Syndrome: A Mendelian Randomization Study.

Wang L, Cao W, Zheng Q, Li D, Hou Y, Chen S Food Sci Nutr. 2025; 13(2):e70037.

PMID: 39968214 PMC: 11833296. DOI: 10.1002/fsn3.70037.


Impact of Weight Loss on Metabolic Dysfunction Associated Steatohepatitis and Hepatic Fibrosis.

Takawy M, Abdelmalek M Curr Diab Rep. 2025; 25(1):23.

PMID: 39964660 DOI: 10.1007/s11892-025-01579-1.


Hyperuricemia-induced complications: dysfunctional macrophages serve as a potential bridge.

Gu W, Zhao J, Xu Y Front Immunol. 2025; 16:1512093.

PMID: 39935474 PMC: 11810932. DOI: 10.3389/fimmu.2025.1512093.


Unveiling the link between chronic inflammation and cancer.

Tripathi S, Sharma Y, Kumar D Metabol Open. 2025; 25:100347.

PMID: 39876904 PMC: 11772974. DOI: 10.1016/j.metop.2025.100347.


Potential therapeutic strategies for MASH: from preclinical to clinical development.

Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H Life Metab. 2025; 3(5):loae029.

PMID: 39872142 PMC: 11749562. DOI: 10.1093/lifemeta/loae029.


References
1.
Spengler E, Loomba R . Recommendations for Diagnosis, Referral for Liver Biopsy, and Treatment of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Mayo Clin Proc. 2015; 90(9):1233-46. PMC: 4567478. DOI: 10.1016/j.mayocp.2015.06.013. View

2.
Stickel F, Hellerbrand C . Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut. 2010; 59(10):1303-7. DOI: 10.1136/gut.2009.199661. View

3.
Tilg H, Moschen A . Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010; 52(5):1836-46. DOI: 10.1002/hep.24001. View

4.
Fukui H . Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation?. Inflamm Intest Dis. 2018; 1(3):135-145. PMC: 5988153. DOI: 10.1159/000447252. View

5.
Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B . Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018; 69(4):927-947. DOI: 10.1016/j.jhep.2018.06.008. View