» Articles » PMID: 32839469

Genome-wide Functional Analysis of Phosphatases in the Pathogenic Fungus Cryptococcus Neoformans

Abstract

Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans.

Citing Articles

Genome restructuring and lineage diversification of during chronic infection of human hosts.

Montoya M, Wilhoit K, Murray D, Perfect J, Magwene P medRxiv. 2025; .

PMID: 40034768 PMC: 11875314. DOI: 10.1101/2025.02.17.25320472.


Insights into phosphatidic acid phosphatase and its potential role as a therapeutic target.

Carman G, Stukey G, Jog R, Han G Adv Biol Regul. 2025; 95:101074.

PMID: 39788800 PMC: 11832324. DOI: 10.1016/j.jbior.2025.101074.


Single nucleotide polymorphisms are associated with strain-specific virulence differences among clinical isolates of Cryptococcus neoformans.

Jackson K, Kono T, Betancourt J, Wang Y, Kabbale K, Ding M Nat Commun. 2024; 15(1):10491.

PMID: 39622806 PMC: 11612297. DOI: 10.1038/s41467-024-54729-6.


The Cryptococcus neoformans STRIPAK complex controls genome stability, sexual development, and virulence.

Peterson P, Choi J, Fu C, Cowen L, Sun S, Bahn Y PLoS Pathog. 2024; 20(11):e1012735.

PMID: 39561188 PMC: 11614259. DOI: 10.1371/journal.ppat.1012735.


Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology.

Boucher M, Banerjee S, Joshi M, Wei A, Huang M, Lei S bioRxiv. 2024; .

PMID: 39484549 PMC: 11526942. DOI: 10.1101/2024.10.22.619677.


References
1.
Bahn Y, Jung K . Stress signaling pathways for the pathogenicity of Cryptococcus. Eukaryot Cell. 2013; 12(12):1564-77. PMC: 3889573. DOI: 10.1128/EC.00218-13. View

2.
Rajasingham R, Smith R, Park B, Jarvis J, Govender N, Chiller T . Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017; 17(8):873-881. PMC: 5818156. DOI: 10.1016/S1473-3099(17)30243-8. View

3.
Jung K, Yang D, Maeng S, Lee K, So Y, Hong J . Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun. 2015; 6:6757. PMC: 4391232. DOI: 10.1038/ncomms7757. View

4.
Lee K, So Y, Yang D, Jung K, Choi J, Lee D . Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun. 2016; 7:12766. PMC: 5052723. DOI: 10.1038/ncomms12766. View

5.
Blaskovich M . Drug discovery and protein tyrosine phosphatases. Curr Med Chem. 2009; 16(17):2095-176. DOI: 10.2174/092986709788612693. View