Corneal Stromal Filler Injection As a Novel Approach to Correct Presbyopia-An Pilot Study
Overview
Ophthalmology
Authors
Affiliations
Purpose: To evaluate the feasibility of corneal stromal filler injection to create bifocality to correct presbyopia by flattening the central posterior corneal surface and thus increase refractive power.
Methods: Femtosecond laser-assisted corneal stromal pockets of varying diameters close to the posterior corneal curvature were cut into rabbit eyes . Subsequently, hyaluronic acid was injected to flatten the central posterior curvature. Refractive parameters were determined using perioperatively acquired three-dimensional optical coherence tomography (OCT) scans. Using micrometer-resolution OCT, corneal endothelial cell morphology and density were evaluated.
Results: Following filler injection into the corneal stromal pockets, a fair volume-dependent increase of central refractive power up to 4 diopters (dpt) was observed. Unremarkable refractive changes of the peripheral posterior (3 mm, 0.20 ± 0.11 dpt; 2 mm, 0.11 ± 0.10 dpt) and the anterior corneal curvature (3 mm, 0.20 ± 0.34 dpt; 2 mm, 0.33 ± 0.31 dpt) occurred. Only negligible changes in astigmatism were observed. Different sizes of optical zones could be established. Furthermore, no alterations of corneal endothelial morphology or endothelial cell density (2831 ± 356 cells/mm vs. 2734 ± 292 cells/mm; = 0.552) due to the adjacent laser treatment were observed.
Conclusions: The investigations proved the principle of injecting a filler material into femtosecond laser-created corneal stromal pockets close to the posterior corneal curvature as an efficacious, individually adjustable, and novel approach to correct presbyopia without ablating corneal tissue.
Translational Relevance: Due to the aging population worldwide, presbyopia is an increasing problem; thus, our study may encourage further exploration to extend the treatment spectrum of clinically used femtosecond laser systems to correct presbyopia.