» Articles » PMID: 32817618

DESS Deconstructed: Is EDTA Solely Responsible for Protection of High Molecular Weight DNA in This Common Tissue Preservative?

Overview
Journal PLoS One
Date 2020 Aug 21
PMID 32817618
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

DESS is a formulation widely used to preserve DNA in biological tissue samples. Although it contains three ingredients, dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA) and sodium chloride (NaCl), it is frequently referred to as a DMSO-based preservative. The effectiveness of DESS has been confirmed for a variety of taxa and tissues, however, to our knowledge, the contributions of each component of DESS to DNA preservation have not been evaluated. To address this question, we stored tissues of three aquatic taxa, Mytilus edulis (blue mussel), Faxonius virilis (virile crayfish) and Alitta virens (clam worm) in DESS, each component of DESS individually and solutions containing all combinations of two components of DESS. After storage at room temperature for intervals ranging from one day to six months, we extracted DNA from each tissue and measured the percentage of high molecular weight (HMW) DNA recovered (%R) and normalized HMW DNA yield (nY). Here, HMW DNA is defined as fragments >10 kb. For comparison, we also measured the %R and nY of HMW DNA from extracts of fresh tissues and those stored in 95% EtOH over the same time intervals. We found that in cases where DESS performed most effectively (yielding ≥ 20%R of HMW DNA), all solutions containing EDTA were as or more effective than DESS. Conversely, in cases where DESS performed more poorly, none of the six DESS-variant storage solutions provided better protection of HMW DNA than DESS. Moreover, for all taxa and storage intervals longer than one day, tissues stored in solutions containing DMSO alone, NaCl alone or DMSO and NaCl in combination resulted in %R and nY of HMW DNA significantly lower than those of fresh tissues. These results indicate that for the taxa, solutions and time intervals examined, only EDTA contributed directly to preservation of high molecular weight DNA.

Citing Articles

Optimal liquid-based DNA preservation for DNA barcoding of field-collected fungal specimens.

Lee Y, Phang G, Chen C, Ou J, Fan Y, Huang Y Heliyon. 2024; 10(17):e36829.

PMID: 39281619 PMC: 11401026. DOI: 10.1016/j.heliyon.2024.e36829.


Assessing the feasibility of free DNA for disaster victim identification and forensic applications.

Worrapitirungsi W, Sathirapatya T, Sukawutthiya P, Vongpaisarnsin K, Varrathyarom P Sci Rep. 2024; 14(1):5411.

PMID: 38443390 PMC: 10914783. DOI: 10.1038/s41598-024-53040-0.


Greater than pH 8: The pH dependence of EDTA as a preservative of high molecular weight DNA in biological samples.

DeSanctis M, Soranno E, Messner E, Wang Z, Turner E, Falco R PLoS One. 2023; 18(1):e0280807.

PMID: 36689492 PMC: 9870144. DOI: 10.1371/journal.pone.0280807.


Contrasting modes of mitochondrial genome evolution in sister taxa of wood-eating marine bivalves (Teredinidae and Xylophagaidae).

Li Y, Altamia M, Shipway J, Brugler M, Bernardino A, Brito T Genome Biol Evol. 2022; .

PMID: 35714221 PMC: 9226539. DOI: 10.1093/gbe/evac089.


Extension of Mitogenome Enrichment Based on Single Long-Range PCR: mtDNAs and Putative Mitochondrial-Derived Peptides of Five Rodent Hibernators.

Emser S, Schaschl H, Millesi E, Steinborn R Front Genet. 2022; 12:685806.

PMID: 35027919 PMC: 8749263. DOI: 10.3389/fgene.2021.685806.


References
1.
Brayton C . Dimethyl sulfoxide (DMSO): a review. Cornell Vet. 1986; 76(1):61-90. View

2.
Gueroult M, Picot D, Abi-Ghanem J, Hartmann B, Baaden M . How cations can assist DNase I in DNA binding and hydrolysis. PLoS Comput Biol. 2010; 6(11):e1001000. PMC: 2987838. DOI: 10.1371/journal.pcbi.1001000. View

3.
Camacho-Sanchez M, Burraco P, Gomez-Mestre I, Leonard J . Preservation of RNA and DNA from mammal samples under field conditions. Mol Ecol Resour. 2013; 13(4):663-73. DOI: 10.1111/1755-0998.12108. View

4.
Allen-Hall A, McNevin D . Human tissue preservation for disaster victim identification (DVI) in tropical climates. Forensic Sci Int Genet. 2012; 6(5):653-7. DOI: 10.1016/j.fsigen.2011.12.005. View

5.
Mulcahy D, Macdonald 3rd K, Brady S, Meyer C, Barker K, Coddington J . Greater than kb: a quantitative assessment of preservation conditions on genomic DNA quality, and a proposed standard for genome-quality DNA. PeerJ. 2016; 4:e2528. PMC: 5068448. DOI: 10.7717/peerj.2528. View